
0

S U P E R V I S O R

J a r e k F r a n c i k

F a c u l t y o f S c i e n c e ,

E n g i n e e r i n g a n d

C o m p u t i n g

2 0 2 2 / 2 0 2 3

Daniel Bellido Chueco

This document presents the development of my Final Year Project, from the

initial aims and objectives to the final implementation and testing. The State

of the Art Review section provides a comprehensive analysis of existing

games and technologies, leading to the requirements specification and

development methodology. The Game Design section includes both the

conceptual and technical designs. Implementation details are provided in

the following section, while Testing and Evaluation assesses the game's

performance. The legal, social, security, and ethical issues related to the

game are discussed, followed by a critical review and conclusion. Finally, the

document ends with a list of references and technical appendices.

ARMA X

1

Contents
1. Introduction .. 3

About this project.. 3

Aims and Objectives .. 4

Summary of the achievements ... 5

Gameplay Programming ... 5

Level Design ... 6

Narrative Design* ... 7

UX Design ... 7

2. State of the Art Review ... 8

Review of similar games .. 8

Useful Game Mechanics .. 9

Player Controller ... 9

Interaction with the environment .. 10

Artificial Intelligence .. 11

Technologies, algorithms and techniques ... 19

Development Tools ... 20

3. Analysis, requirements specification and development methodology 21

MoSCoW Analysis .. 21

Requirements specification ... 22

MUST .. 22

SHOULD ... 23

COULD ... 25

Development methodology .. 26

4. Game Design ... 30

Conceptual Design ... 30

Theme .. 30

Storyline .. 30

QUESTLINE ... 31

Game Mechanics ... 31

Appearance .. 32

GUI .. 33

Level Design ... 35

Technical Design .. 37

2

5. Implementation ... 38

Parkour System ... 38

Code Snippets .. 42

Climbing System ... 46

Code Snippets .. 48

6. Testing and Evaluation .. 51

Test Cases .. 51

Bugs ... 55

User Feedback ... 56

Evaluation ... 62

7. Legal, Social, Security and Ethical Issues ... 63

PEGI .. 63

Copyright ... 63

Ethical Issues ... 63

Data Security ... 64

8. Critical Review and Conclusion ... 65

Achievements .. 65

Areas to improve ... 66

Time Management... 66

Personal Learning .. 67

Future Work .. 68

9. Research and References .. 70

3

ARMA X - Dissertation

1. Introduction

About this project

This project is a third-person stealth game developed with the Unity Engine called

Arma X. Set in a dystopian world where the Nazis conquer Europe during the World

War II and maintain power in the old continent until nowadays; the game focuses on the

mission of a secret agent who must infiltrate a military base taken over by the Nazi

regime in Iceland.

The agent's mission is to find out if the Nazis have moved nuclear weapons on the

island with the intention of attacking America by surprise. During this process, the

agent confronts a high-ranking SS officer and manages to get hold of top-secret

documentation that reveals the true intentions of the regime. These documents contain

information about an extremely dangerous weapon known as Arma X.

This secret weapon has the ability to emit powerful electromagnetic pulses that disable

all types of electrical devices, which represents a security threat against any country

since there would be no way to defend against nuclear attacks.

Regarding gameplay mechanics, the game places significant emphasis on stealth-

oriented tactics and devising strategies to outmanoeuvre the AI-controlled enemy units

that patrol the game's environment. The player is equipped with a diverse skill set,

enabling them to effectively traverse through the game's terrain and overcome various

physical obstacles such as fences, barriers, windows, and the ability to climb vertical

surfaces including walls, pipes, cornices, and railings.

Furthermore, the player has the capacity to navigate the game environment in different

positions, specifically standing, crouching, and crawling, allowing for stealthy

infiltration through ventilation shafts. Noise manipulation constitutes a pivotal aspect of

gameplay, enabling the player to distract AI through sound-generating actions such as

shelling, stone-throwing, or bottle-throwing.

In the event of enemy detection, the player possesses an arsenal of weapons to defend

themselves against hostiles, comprising an array of lethal arms including assault rifles,

shotguns, sniper rifles, grenades, and rocket launchers. Notably, a silenced pistol

constitutes the player's principal tool for stealth eliminations, while non-lethal

takedowns may be performed through the execution of enemies from behind when they

4

are distracted. The ability to conceal the corpses of adversaries, as well as the player

themselves, is possible through a variety of means including hiding in containers,

lockers, and boxes, thereby evading detection and confusing enemies.

Moreover, the game includes the possibility of implementing vehicular transport

options, such as off-road cars, trucks, and tanks, to expedite travel and augment the

gaming experience.

The gameplay mechanics of the game's primary character are intricate and expansive,

necessitating a considerable time investment to master the complex and diverse control

mechanisms.

Aims and Objectives

The aim of this project is to create a stealth game that draws inspiration from popular

titles such as Metal Gear, Splinter Cell, Wolfenstein, and Assassin's Creed. One of the

primary objectives of the project is to develop gameplay mechanics that enable players

to experience the role of a spy, complete with various abilities that can be employed to

outsmart enemy AI. Accordingly, the project places a significant emphasis on player

control, incorporating a parkour system that allows for the traversal of obstacles of

varying heights and triggering distinct animations. Furthermore, a climbing system has

been implemented to provide players with the ability to climb higher walls, contributing

to a more diverse range of gameplay mechanics.

Another fundamental pilar of this project is the creation of a realistic gaming experience

through the development of artificial intelligence (AI) that can respond appropriately to

specific situations, presenting a challenge for players. To achieve this aim, the AI has

been divided into two distinct phases: basic AI and advanced AI. The development of

the AI system is a critical component of the project, as it will allow for more immersive

gameplay, enhancing the realism of the game world and elevating the player's

experience.

In addition to the primary objectives of this project, there is a crucial need to introduce

action into the game at specific moments to prevent it from becoming monotonous for

the player. To achieve this goal, a diverse set of weaponry will be developed, enabling

the player to engage in direct combat with enemies, as well as providing the ability to

destroy certain stage elements when the player seeks to exit stealth mode. This approach

will enhance the overall gaming experience, adding an additional layer of gameplay

mechanics and increasing the level of excitement for players.

The objective of the level design is to ensure coherence with the game's narrative by

implementing a quest line that is based on stealthily exploring the area and advancing

towards various objectives that are updated upon completion. The game's linear

5

narrative is supported by cinematic elements that offer both playable and cinematic

experiences to the player.

To maintain a balanced difficulty level, various types of enemies will be incorporated,

each possessing different weapons, resistance to attacks, and reactions to suit the game's

requirements. Simple cameras will monitor certain areas, private soldiers will patrol the

base, and elite soldiers or vehicles will appear when the alarm is triggered.

The level design should be expansive, offering players side missions and the

opportunity to collect items that aid in better comprehending the game's story. Such

features allow for player exploration outside of the main quest and provide replayability

for players seeking to achieve 100% completion.

There is a plan to develop a Game Manager which will be responsible for managing

vital components of the video game, including a quest line that aligns with the

storytelling and narrative of the game, in order to enhance its immersive and

entertaining aspects. Furthermore, an Audio Manager is also implemented to oversee

the management of all in-game sounds and volume.

Summary of the achievements

In relation to the achievements of this project, its most notable achievement pertains

primarily to gameplay programming through the implementation of the player

controller. Nevertheless, extensive research has also been conducted in other fields,

including level design, visual effects, lighting, narrative, and artificial intelligence.

Gameplay Programming

Basic Movement: The fundamental implementation of player movement consists of

displacing the player with a Vector3, aided by Cinemachine's FreeLookCamera, which

controls camera movement. Furthermore, a BlendTree has been incorporated into the

Animator component, allowing for the execution of various movement animations

based on input received.

Multiple Stances: Expansion of the basic movement with different stances: Stand,

Crouch and Prone. Each stance triggers different animations and modifies the player's

speed accordingly. Additionally, the size of the capsule collider is adjusted with respect

to each stance, enabling the player to navigate through gaps of different heights such as

mid-height gaps or ventilation shafts.

Parkour System: This system allows the player to interact with the environment and

perform various actions depending on the type of object in front of him. This detection

6

is based on the combination of two raycasts originating from the player's position that

scan the environment and determine what type of object the raycast has hit and how

high it is. The different animations to perform are Scritible Objects that contain

necessary data that must match the parameters of the object detected by the raycast.

Climbing System: This implementation is an expansion of the Parkour System where

the scanner fires multiple raycasts looking for a specific type of object with the ledge

tag. When one of these raycasts hits one of these objects it triggers the animation and

the climb state, providing a new type of movement within this state and disabling the

character's usual state. The player can navigate a network of ledges thanks to the input

of a Vector2 and the action button.

Secondary Aim Camera: A secondary camera, which can be activated through input,

transitions the perspective from FreeLookCamera to AimCamera, shifting the camera's

position over the player's shoulder to offer an improved perspective for aiming. This

feature is currently under development, and the necessary adjustments to accommodate

this type of camera, which should not rotate around the player, have yet to be

implemented. Additionally, Inverse Kinematics must be integrated into the character's

rig to facilitate the character's ability to aim freely in the direction of the camera.

Level Design

Terrain: Adapting this tool in an HDRP project has had its difficulties due to certain

incompatibilities that some of its features present, such as painting trees or plants. It can

be consider an achievement to have made this tool work, as the render pipeline was

throwing many errors that made the project unplayable.

Use of Assets: The utilization of assets has played a pivotal role in the recreation of an

environment that adheres to the narrative, while also facilitating the creation of a

navigable military base with obstacles and other intricacies that serve to enhance the

player's immersive experience. This has involved the utilization of both freely available

and commercially acquired assets from the Unity Asset Store.

Particle Effects: The present project employs particle effects in the recreation of a rain

scenario, wherein numerous droplets are cyclically instantiated. These droplets collide,

thereby triggering another particle effect that simulates waves of droplets striking the

surface of the ground.

Lighting and Post-processing: Implementation of a pair of post-processing volumes

that enhance the lighting and colour of the scene. One of these volumes simulates an

underwater environment, while the other creates a darker, fog-laden atmosphere that

emulates reduced visibility conditions for both players and enemies.

7

Additionally, a collection of lights have been incorporated into the scene to produce a

more lifelike illumination, which in turn serves to heighten the visual impact of the

scene.

Narrative Design*

Story and Plot: Without a doubt, one of the most important sections of this project has

been being able to develop a narrative with a hook that draws the player's attention. A

narrative design has been carried out, developing the most relevant characters in the

story and a script that addresses the first bars of the mission.

Video Introduction: With the help of other programs such as Premiere Pro and After

Effects, it has been possible to assemble a video that historically contextualizes the

player, placing him in a parallel reality. The video has been built based on real images

of the Second World War and an animated map.

Cinematic: The project also presents a cinematic that shows the type of story that is

narrated at the beginning of the game. This implementation has been possible thanks to

Unity's Timeline tool and Mixamo animations.

Note*: The narrative section of this project has been developed fo r the Game and

Media Creation Processes module and has been evaluated by Hope Caton. Therefore, it

should not be taken into account for the final grade of the Final Year Project.

UX Design

Main Menu: The implementation of a basic and functional Main Menu that provides a

minimum of UI that transitions between the introductory video and the cinematic that

introduces the player to a new game, in addition to implementing other buttons which

some are not functional but will be in future updates.

Loading Screen: The present implementation facilitates the transition from the main

menu to any other scene that involves loading game levels. Specifically, the scene

loading process is performed asynchronously in order to enable the player to access the

scene prior to the full loading of all associated level resources. This design feature

enhances the speed and efficiency of transitioning between distinct game scenarios.

8

2. State of the Art Review

Review of similar games

This project is mostly inspired by many games belonging to the stealth genre but if any

have to be mentioned some, those would undoubtedly be sagas like Metal Gear, Splinter

Cell and Wolfenstein.

Metal Gear V: Ground Zeros is a prologue to Metal Gear V: The Phantom Pain, or what

has been a technical demo of The Phantom Pain. In Ground Zeros there is a relatively

small map depicting an American military base where Snake has to locate and rescue

two prisoners held at the said base. The control of the main character is simply smooth

and satisfying, offering several actions and interactions with the environment that

makes the game feel alive. Being a prologue, the narrative is simple but sufficient but

what make this game really fun are the fluidity of the protagonist's control and the

Artificial Intelligence of the enemies that manage to convey that touch of realism that

makes the player feel the adrenaline of actually infiltrating a military base. Being a

technical demo, the story is short but very replayable, since it has different missions to

choose from that take place in the same base, which lengthens the player's

entertainment. This project is based on the proposal of Ground Zeroes, which will try to

replicate the control of the main character, advanced AI and replayability in the same

scenario.

On the other hand, we have the Splinter Cell saga that, having similar gameplay, offers

a slower and more tactical game system with an arsenal of gadgets more appropriate for

9

that style of game, avoiding more direct action with enemies. What make this second

title fun are also the adrenaline, the tension, and the satisfaction that comes from

completing the level in total stealth. The project adopts some ideas from Splinter Cell,

such as playing with stage lighting to hide the player by destroying light bulbs, using

indicators on the HUD to know the visibility status, and using gadgets like lock picks

and night vision.

Finally, even though it is not a stealth game and it is played in the first person, the

project takes as an example and rescues the theme and dystopian setting of the

Wolfenstein saga, where the fun is to give the player the opportunity to fight against the

Nazi regime in a parallel world that does not exist.

Useful Game Mechanics

Player Controller

Undoubtedly, level navigation is a crucial aspect of gameplay mechanics across various

types of games. Smooth and precise control is particularly essential for Metal Gear and

Splinter Cell games. The level navigation mechanism must enable players to move

freely and derive satisfaction. In numerous games, players encounter obstacles that

impede level navigation by preventing them from climbing or crossing them, which

results in frustration. Therefore, it is imperative to offer players the freedom to move

around the game environment without such limitations. Arma X aims to provide game

mechanics that facilitate movement with a level of freedom that emulates real-world

movements.

In this regard, Arma X's movement mechanics bear similarities to those in Metal Gear

and Splinter Cell, allowing players to stand, crouch, or go prone. Furthermore, the

mechanics enable players to sprint and jump over objects such as fences, windows, or

walls, rendering level navigation more fluid.

In addition to basic control and a system that allows for parkour, there is also the ability

to climb certain surfaces by creating a network of ledges that guide the player from the

base of the surface to the top of it. Thanks to this mechanic it is possible to climb

different game objects such as cliffs or buildings that help the player avoid areas full of

enemies or simply make use of the mechanics to break the monotony proposed by the

10

level. In any case, it is a mechanic that offers many opportunities and does not

necessarily have to be limited to the aforementioned.

Another important aspect related to the Player Controller is the combat system. Being a

stealth game, the player should be able to knock out enemies without drawing the

attention of all of them. In addition, the player will not only have to knock them out but

also hide the body of the enemies so that when an enemy discovers the body of an ally it

does not trigger the alarm.

But of course, on some occasions, the player will not be able to respect the principles of

stealth and in certain situations, confrontation will be necessary, which will set off all

the alarms. For this type of situation, it is essential to equip the player with certain

weapons that allow him to fight against all types of enemies, be they soldiers, robots, or

heavy vehicles. That is why Arma X requires the implementation of a complete

inventory that makes available to the player weapons such as assault rifles, shotguns,

grenades, and rocket launchers. To facilitate the combat system, an extra camera is

needed to switch to an over-the-shoulder perspective, which alters the fundamental

movement mechanics to resemble those of the first-person shooter (FPS) genre, as seen

in Metal Gear V. In addition to the arsenal, the inventory must also have certain gadgets

such as night vision goggles, lock picks, or first aid kits.

Being a stealth game, some game mechanics are essential in a project of these

characteristics. Stealth itself is a game mechanic that relies on avoiding detection by the

enemy therefore the character has to navigate the level by hiding behind objects and

avoiding making noise in order not to attract the attention of the AI.

In this sense, the player has several stances where they will generate a different sound

level when moving through the level, but they can also generate noise to distract the AI

and breakthrough thanks to this noise generation method. This noise can be caused by

items being thrown from the player's position to the desired location as long as it meets

a range of requirements that respect real-world physics. In other words, the player will

have the ability to throw objects such as bullet casings, stones, or bottles to generate

noise and thus intentionally attract the attention of the AI.

Interaction with the environment

The interaction with the environment is a series of mechanics that add realism and fun

to the gameplay. In sagas like Metal Gear, it is possible to interact with certain elements

of the environment to sabotage the enemy base, such as turning off an electricity

generator or destroying enemy communications equipment which means that in case of

alarm, the enemy cannot call for reinforcements or the Simply being able to hide in a

locker or container to evade enemies expands the gameplay and enriches the player

experience.

11

Other mechanics such as opening a simple door are necessary to add some difficulty to

the game and prevent it from being too easy. In addition, this type of mechanics allows

inserting small puzzles or mini-games such as picking the lock as happens in games like

Splinter Cell or Skyrim to give another example.

Another interesting mechanic in Splinter Cell is to create blind light spots if a bulb or

light source is shot to prevent the enemy AI from gaining visibility at that spot. This

also requires some kind of on-screen indicator that shows the player how visible they

are to an enemy so they know if the player is taking cover in a safe zone or otherwise

has to move.

In addition to the aforementioned mechanics, Arma X aims to incorporate driving

mechanics into the gameplay. Given the size of the game's proposed level, the inclusion

of vehicles such as SUVs, trucks, and tanks could enhance the player's ability to

traverse the map and expand the combat system. Moreover, the game's narrative

demands the availability of a small aircraft, housed in a hangar, for the player to use in

escaping the island upon completion of the game's objectives. This culminating episode,

involving a dramatic escape by plane, would provide a high-stakes action sequence for

the player to experience.

Artificial Intelligence

Finally, one of the most important pillars, not only of the stealth genre but of video

games in general: Artificial intelligence.

While it is true that a simple Finite State Machine could meet the basic needs of this

project, the truth is that titles like Metal Gear V have a much more complex and

dynamic AI. It is a field that needs a lot of research and practice to achieve complex

behaviours that respond efficiently.

For example, in games like Metal Gear V the AI is so dynamic that its efficiency is

affected even by the weather. The level may have a clear day and offer a lot of visibility

or there may be a sandstorm that makes visibility difficult and offers small periods

where the player can go unnoticed thanks to the complexity of these AIs. These two

scenarios where the weather changes dynamically can happen in the same game and the

AI has to adapt to any changes that occur in the level.

Another example of how the AI adapts to changes dynamically in Splinter Cell is when

the player destroys a light bulb in the environment and reduces the visibility of the AI

creating a blind spot where they are safe from the enemy's field of vision.

Regarding the AI of this project, the idea is intended to be ambitious and take it as far as

possible. The enemy Artificial Intelligence prototype is based on a state machine that

will control a series of 12 states or more that could be added in more advanced stages of

12

development. This AI is designed to endow guards with basic senses such as sight and

hearing but also some reasoning ability in certain situations.

Sight: The AI field of view will consist of two areas with different magnitudes that will

determine if the player has been detected or not. The larger magnitude cone will alert

the AI that something unusual is in its field of view so it will decide to approach in

(SEARCH) to investigate the location of the object. The smaller magnitude cone will

determine what the AI can see clearly and detect the threat directly, so it will trigger

directly to the ATTACK state. In addition, two small areas will also be added behind

the enemies so that they can notice unusual activity over their shoulder and add a touch

of realism (SEARCH).

3 fields of view: Area 1(Red), Area 2(Yellow), Area 3(Orange)

Hearing: In order to provide the AI auditory awareness, objects that produce noise will

cast a radius, of different sizes depending on the object, which will trigger the AI's

reaction when the radius collides with enemies. The radius must pass a vector3 to the AI

and this will activate the state SEARCH that will apply the A* algorithm to investigate

the incident using the shortest path.

13

Finite State Machine:

State Execution Transition to Triggered by

IDLE The IDLE state will simply run an
animation of the enemy standing on
the spot with a slight body
movement to give the impression
that they are alive. After
approximately 10 seconds, the IDLE
state will transition by default to the
PATROL state if this is not
interrupted by any other event.

PATROL:
After approximately
10 seconds, the IDLE
state will transition by
default to the PATROL
state if this is not
interrupted by any
other event.

PATROL:
After patrolling for
about 120 seconds,
the enemy
transitions from
PATROL state to IDLE
state by default. This
creates a loop where
the enemy goes
from IDLE to PATROL
and vice versa
automatically by
default if no other
event triggers
another situation.

ATTACK:
If the Player enters
Area 1 of sight and
the line of sight or ray
cast is TRUE, the
enemy transitions to
the ATTACK state.

SEARCH:
If the Player enters
Area 2/3 of sight and
the line of sight or ray
cast is TRUE, the
enemy transitions to
the SEARCH state and
receives a Vector3
location.

SEARCH:
After reaching the
received location, if
there have been no
other events so far,
the enemy returns
to the IDLE state
after about 15
seconds.

14

HEAR:
If the spherical
collider produced by
an object collides with
an enemy, the AI goes
to the HEAR state,
receives a Vector3
location, and then to
the SEARCH state.

CAUGHT:
If the Player collides
with the enemy from
behind and the line of
sight is FALSE, the
player immobilizes
the enemy leaving
them defenceless.

PATROL The PATROL state makes the enemy
travel through various waypoints
scattered throughout the level for
120 seconds, once the time is up and
without any other event having
interfered with the routine, the AI
transitions to the IDLE state for 10
seconds and then returns to the
PATROL state.

IDLE:
After 120 seconds, the
PATROL state will
transition by default
to the IDLE state if
this is not interrupted
by any other event.

IDLE:
After approximately
10 seconds, the IDLE
state will transition
by default to the
PATROL state if this
is not interrupted by
any other event. SEARCH:

If the Player enters
Area 2/3 of sight and
the line of sight or ray
cast is TRUE, the
enemy transitions to
the SEARCH state and
receives a Vector3
location.

HEAR:
If the spherical
collider produced by
an object collides with
an enemy, the AI goes
to the HEAR state,
receives a Vector3
location, and then to
the SEARCH state.

ATTACK:
If the Player enters
Area 1 of sight and
the line of sight or ray
cast is TRUE, the
enemy transitions to
the ATTACK state.

CAUGHT:
If the Player collides

15

with the enemy from
behind and the line of
sight is FALSE, the
player immobilizes
the enemy leaving
them defenceless.

HEAR The HEAR state plays an animation
where the enemy stops confused
and receives a Vector3 coordinate
and then goes into the SEARCH state.

SEARCH:
If the enemy receives
the Vector3
coordinate, it starts its
journey towards the
location.

IDLE:
If the spherical
collider produced by
an object collides
with an enemy and
the line of sight is
FALSE, the AI goes to
the HEAR state,
receives a Vector3
location, and then to
the SEARCH state.

PATROL:
If the spherical
collider produced by
an object collides
with an enemy and
the line of sight is
FALSE, the AI goes to
the HEAR state,
receives a Vector3
location, and then to
the SEARCH state.

CAUGHT:
If the Player collides
with the enemy from
behind and the line of
sight is FALSE, the
player immobilizes
the enemy leaving
them defenceless.

SEARCH:
If the spherical
collider produced by
an object collides
with an enemy and
the line of sight is
FALSE, the AI goes to
the HEAR state,
receives a Vector3
location, and then to
the SEARCH state
again.

TRACK:
NOT DEFINED YET

SEARCH The search state plays an animation
of the alert enemy moving towards a
specific location. This state is
triggered by visual activation when
the player enters the area of vision
of greater magnitude and the line of
sight is TRUE, receiving the last
Vector 3 coordinates from the player

IDLE:
After some seconds, if
the enemy AI does
not receive any other
input the AI goes back
to the IDLE state after
reaching the Vector3
location.

HEAR:
If the spherical
collider produced by
an object collides
with an enemy and
the line of sight is
FALSE, the AI goes to
the HEAR state,

16

and applying the A* algorithm to
arrive at the location of the most
efficient way possible.
This state can also be triggered by
the sound produced by objects
through colliders that will transfer
the Vector3 to the enemy so that in
the same way they apply the A*
algorithm to investigate the area as
soon as possible.

receives a Vector3
location, and then to
the SEARCH state
again.

HEAR:
If the spherical
collider produced by
an object collides with
an enemy, the AI goes
to the HEAR state,
receives a Vector3
location, and then to
the SEARCH state
again.

PAIN:
If the enemy gets
shot but not killed,
the pain state plays
an animation and
goes to the search
state.

CHASE:
If the enemy sight of
line is FALSE after
chasing the player
for a while, it goes
back to the SEARCH
state and last player
location.

ATTACK:
If the Player enters
Area 1 of sight and
the line of sight or ray
cast is TRUE, the
enemy transitions to
the ATTACK state.

COVER:
After reloading the
weapon or recover
some life, the enemy
enters to the
SEARCH state and
goes to the last
player location.

CAUGHT:
If the Player collides
with the enemy from
behind and the line of
sight is FALSE, the
player immobilizes
the enemy leaving
them defenceless.

TRACK:
If enemy finds and
unusual object on
the way, it follows
the track defined by
the object.

TRACK The track state consists of making
the enemy perceive some foreign
object or change in the environment
that was not there before. For
example, footprints, blood on the
ground, or other objects can cause
confusion and alert the enemy.

HEAR:
If the spherical
collider produced by
an object collides with
an enemy and the line
of sight is FALSE, the
AI goes to the HEAR
state, receives a
Vector3 location, and
then to the SEARCH
state again.

PATROL:
If enemy finds and
unusual object on
the way, it follows
the track defined by
the object.

17

ATTACK:
If the Player enters
Area 1 of sight and
the line of sight or ray
cast is TRUE, the
enemy transitions to
the ATTACK state.

ATTACK

If the Player enters Area 1 of sight
and the line of sight or ray cast is
TRUE, the enemy attacks the player
until his magazine runs out of
bullets, if his life is in danger or if he
loses sight of the player.

COVER:
The enemy takes
cover to reload his
weapon.
The enemy takes
cover if his life is
under 30%

IDLE:
if the Player enters
Area 1 of sight and
the line of sight or
ray cast is TRUE, the
enemy transitions to
the ATTACK state.

PATROL:
if the Player enters
Area 1 of sight and
the line of sight or
ray cast is TRUE, the
enemy transitions to
the ATTACK state.

CHASE:
The enemy chases the
player if the player
moves away from the
Area 1 of sight and
the line of sight is
TRUE .

TRACK:
if the Player enters
Area 1 of sight and
the line of sight or
ray cast is TRUE, the
enemy transitions to
the ATTACK state.

SEARCH:
if the Player enters
Area 1 of sight and
the line of sight or
ray cast is TRUE, the
enemy transitions to
the ATTACK state.

CHASE:
if the Player enters
Area 1 of sight and
the line of sight or
ray cast is TRUE, the
enemy transitions to
the ATTACK state.

COVER The enemy takes cover to reload his
weapon or if his life is under 30%.
The enemy moves to the closest safe
area to take cover and move to the
next state.

ATTACK:
If the Player enters
Area 1 of sight and
the line of sight or ray
cast is TRUE, the
enemy transitions to
the ATTACK state.

ATTACK:
If the Player enters
Area 1 of sight and
the line of sight or
ray cast is TRUE, the
enemy transitions to
the ATTACK state.

18

CHASE The enemy runs after the player until
he is in range to attack

ATTACK:
When the enemy is
close enough to the
player, they attack

ATTACK:
If the player moves
away from attack
range, the enemy
chases the player.

SEARCH:
If the enemy sight of
line is FALSE it goes to
the search state.

COVER:
If the enemy runs out
of ammo or their life
is under 30%, they
take cover.

CAUGHT If the Player collides with the enemy
from behind and the line of sight is
FALSE, the player immobilizes the
enemy leaving them defenceless.

DEATH:
After player executes
enemy, this one
enters to the DEATH
state.

IDLE:
If the Player collides
with the enemy from
behind and the line
of sight is FALSE, the
player immobilizes
the enemy leaving
them defenceless.

PATROL:
If the Player collides
with the enemy from
behind and the line
of sight is FALSE, the
player immobilizes
the enemy leaving
them defenceless.

SEARCH:
If the Player collides
with the enemy from
behind and the line
of sight is FALSE, the
player immobilizes
the enemy leaving
them defenceless.

PAIN: If the Player
collides with the
enemy from behind
and the line of sight
is FALSE, the player
immobilizes the
enemy leaving them
defenceless.

19

PAIN If the enemy receives damage from
the player, it triggers this state for a
short period leaving the enemy
vulnerable.

SEARCH
After the PAIN
animation is played,
enemy SEARCH.

ANY

DEATH Plays death animation and stays in
this state permanently.

 NONE ANY

Technologies, algorithms and techniques

The project must work with multiple technologies and disciplines to be able to carry out

the work.

First of all, one of the most important implementations is to control the player and offer

a set of animated movements that allow actions such as jumping over a container,

window, or other object in the scene. To do this, the character will need to know what

objects are in front of him, so it is necessary to implement a scanner that allows the

character to detect the different types of objects that are scattered throughout the level.

To make this scanner work, it is necessary to resort to Raycast technology which is in

charge of colliding with the scenario and sending the received data to the player to

process them as best suited.

In order for the character animations to fit the object's parameters, it is necessary to use

the target-matching technique.

Target matching in Unity is a method that allows developers to align and match the

position, rotation, and scale of one game object to another. It simplifies the process of

positioning objects in a scene and helps to create more realistic and immersive

environments. By using target matching, developers can ensure that objects move and

behave in a way that is consistent with the game world, making it easier to create

engaging and believable experiences for players.

Another technique that requires consideration in this project is Inverse Kinematics,

which ensures that animations conform to the gameplay requirements. The

implementation of this technique is necessary when transitioning the player from the

free camera to the secondary aiming camera, which must move parallel to the

character's spine as the player directs their aim upwards, downwards, or to the sides.

The use of Inverse Kinematics ensures that the movements of the character's limbs and

body are realistic and align with the gameplay's needs.

But of course one of the subjects that deserve special attention is Artificial Intelligence.

Being a game based on stealth, this topic needs a lot of research time.

The most common approach is to create a Finite State Machine that contains all the

necessary behaviours of the enemy AI. However, sticking to just this technique can

result in predictable and somewhat dull AI. For this reason, it is important to try to

https://docs.unity3d.com/Manual/TargetMatching.html

20

combine the state machine with some other technique that improves the behaviour of

the enemies and produces more dynamic behaviours. In this sense, there are several

techniques to explore, such as Unity Machine Learning Agents and Goal Oriented

Action Planning.

The Goal Oriented Action Planning (GOAP) is a decision-making AI system commonly

used in game development to create realistic and adaptive behaviours in non-playable

characters (NPCs). This technique involves modelling the NPC's goals and available

actions, then using an algorithm to determine the best sequence of actions to achieve the

goal. By using GOAP, NPCs can react dynamically to changing game conditions and

exhibit a wider range of behaviours.

For this, it is necessary to investigate further and take the online course offered by the

Professor of Games Development, Artificial Intelligence and Computer Science, Penny

de Byl in Holistic3D.

Development Tools

The development tools used in this project include Unity as the game engine, with the

project type being HDRP. In addition, ProBuilder, Cinemachine, Timeline, Mecanim,

and Animation Rigging are used as engine packages to assist in development. The

primary programming language is C#, and the development environment is Windows

10 with Visual Studio 2019. To manage version control, Gitlab is utilized, while Trello

is used for project management and bug tracking. These specialized tools help to

streamline the development process and improve efficiency.

 Game Engine: Unity 2021.3.20f1

 Project type: HDRP

 Engine Packages:

o ProBuilder

o Cinemachine

o Timeline

o Animation Rigging

o Mecanim

 Programming Languages: C#

 Development Environment: Windows 10, Visual Studio 2019

 Specialized Tools: Gitlab for version control, Trello for project management,

and progress tracking.

https://www.h3dlearn.com/course/advanced-ai-for-games-with-goal-oriented-action-planning

21

3. Analysis, requirements specification and

development methodology

MoSCoW Analysis

The MoSCoW analysis is a method used to prioritize requirements in software

development projects. In the context of game development, this analysis helps to

identify the fundamental features of the game that must be implemented and those that

are desirable but dispensable for a basic demo. The table provided outlines the

requirements categorized into four levels of priority: MUST, SHOULD, COULD, and

WON'T.

MUST SHOULD COULD WON’T

Basic Movement Climbing System Collectibles Multiplayer

Multiple Stances Combat System Achievement

System/PS

Trophies

Ads

Parkour System Stealth Movement

(cover/wall walk)

Vehicles Micro-

Transactions

Large level Throw Objects Bullet time Mobile port

Basic AI Advanced AI First person

perspective

Multiple maps

Silent Gun Weapons/Inventory Save/Load Game

System

Player

Customisation

Health Bar Checkpoints Boss Stage

Console

Controller

Environment

Interaction

Secondary

Questline

A Questline/

objectives

Cut-scenes

Sound UX/UI

It is evident that the game with the listed characteristics has the potential to become

highly complex, necessitating the implementation of unforeseen features. However, the

fundamental requirements can be seen in the MUST column, which outlines the

essential player control features, parkour system, console controller, enemy AI features,

silent gun, one big level, main menu, and a set of specific linear missions.

22

The SHOULD column contains desirable features such as cover, obstacle jumping,

environment interaction, enemy AI features, enemy sight areas, and the radar on the

screen. These elements are dispensable for a basic demo but expected to be included in

the final project.

The COULD column consists of additional features that are not fundamental but could

enhance the gameplay experience. Some of the elements in the COULD column could

be moved to the SHOULD column, including the boss stage, player customization,

PlayStation trophies/achievements, collectibles/diary that explains the historical context,

and level repetition with different missions. The game does not contemplate any type of

multiplayer functionality, micro transactions, or a possible port to mobile devices

beyond Nintendo Switch, indicating a focus on the classic single-player story mode.

Overall, the MoSCoW analysis provides a structured approach to prioritize the

requirements for game development. By focusing on the essential features while also

considering desirable and additional features, game developers can design a game that

meets the expectations of players while also ensuring that the development process

remains manageable and efficient.

Requirements specification

MUST

Basic Movement: Essential for the player to navigate the level and reach the final goal.

This movement is based on moving in any direction on a 3D plane that allows character

rotation and third-person camera control.

Multiple Stances: Expansion of the basic movement with different postures: Stand,

Crouch, and Prone. Each stance triggers different animations and modifies the player's

speed accordingly. Additionally, the size of the pod collider adjusts with respect to each

stance, allowing the player to navigate through spaces of different heights, such as mid-

height spaces or ventilation shafts.

Parkour System: This system helps the player to navigate the level with much more

fluidity and the ability to go over fences, walls, windows, and other obstacles that have

a relatively low elevation, such as boxes, containers, or large steps.

Large level: Regardless of size, a level is necessary and preferably one that offers

variety and is visually appealing. It is true that for a prototype it is enough to use blocks

but for the final product, a complete level is necessary.

23

Basic AI: A stealth game without AI cannot be a stealth game. Basic AI is absolutely

necessary for a prototype of this nature and you should at least have a simple Finite

State Machine that handles basic behaviours.

Silent Gun: Basic weapon to be able to get rid of enemies without triggering alarms

and having a minimum Combat System.

Health Bar: Life system that makes the player vulnerable and subject to the Game Over

condition. Without this implementation, the game becomes extremely easy and boring.

Console Controller: The implementation of a gamepad is necessary since the

preference of the players for this type of game requires this type of control and also

because the consoles are a fundamental part of the market.

Questline/objectives: Questlines are important in video games because they provide a

coherent narrative structure, a sense of progress and achievement for the player,

rewards, and motivation to keep playing.

Sound: Sound is a key element in any game. It can add depth, provide feedback, add

emotion, enhance the narrative, and provide visual clues. Without sound, the player's

experience in a game would not be as complete or satisfying.

SHOULD

Climbing System: This system is an expansion of the mechanics of movement and

interaction with the environment. It enriches the gameplay and the player experience by

incorporating a complex and varied movement set.

Combat System: A combat system cannot be limited simply to the use of a pistol. This

system should offer the player a wide range of options, from stealthily knocking out

enemies to confronting them more violently with weapons such as assault rifles,

shotguns, grenades, and other weapons. This system must offer a change of perspective

when aiming the weapon to facilitate aiming and to be able to shoot the enemy more

comfortably.

Stealth Wall Movement: This gameplay mechanic enhances the character's mobility,

while also serving as a valuable strategy for seeking cover from enemies both in stealth

and combat scenarios.

Throw Objects: The primary objective of this gameplay mechanic is to produce sounds

that divert the attention of the AI. Through this mechanic, players can progress through

the level by utilizing objects like bottles or bullet casings to lure enemy soldiers away

from their observation posts. Furthermore, this mechanic can also be leveraged in the

game's Combat System, whereby grenades can be launched using this mechanism.

24

Advanced AI: Since the main character has the ability to throw objects to distract the

AI, it is necessary for the AI to respond to these kinds of events effectively. Therefore,

it is necessary to implement other Artificial Intelligence techniques that go beyond the

simple states that a State Machine can offer. Another technique that can be combined

with the State Machine is the Goal Oriented Action Plan (GOAP) and this will improve

the behavior of NPCs in a more dynamic way. Furthermore, NPCs must react

accordingly to the environment and perform actions such as jumping over fences or

taking cover when the player shoots at them.

Weapons/Inventory: The Combat System requires a diverse arsenal to confront the

enemies, it is necessary to implement an inventory that is capable of managing all these

items and that the player can select the required item in a given situation. The inventory

is not only limited to storing weapons but will also be used to manage other gadgets and

utensils such as lock picks, night vision goggles or first-aid kits.

Checkpoints: Checkpoints are an important game design feature that provides players

with a sense of progress and accomplishment, balances the challenge of a game, and

enhances the storytelling experience. They are a useful tool to create enjoyable games,

while also making sure that players are not discouraged by frequent setbacks or

difficulties. Incorporating checkpoints into the game design can improve player

engagement and satisfaction, ultimately leading to a more successful game.

Environment Interaction: The implementation of interaction with the environment in

a game is a complex and extensive requirement, as it can be closely tied to other

requirements that may not be fully realized until they are implemented. For instance,

shooting a light bulb to create a blind spot and evade detection by the AI has a

dependency on advanced AI. Without advanced AI, destroying the bulb to alter the

scene's lighting will not have the desired effect. Conversely, interactions with the

environment can be straightforward, such as opening a door, triggering an animation, or

exploding a barrel.

This project acknowledges the inclusion of interactions with the environment, such as

interacting with containers or lockers to hide from enemies, or utilizing objects like

computers and buttons to solve puzzles. While the implementation of these interactions

may vary in complexity, they are all crucial elements in enhancing the player's

experience and immersing them in the game's environment.

Cut-scenes: Cinematics are an important tool that enhances the storytelling of the

game. They can provide players with a deeper understanding of the game world and its

characters, and help create a more immersive and engaging experience.

UX/UI: The implementation of the UI is not essential in the game, but it helps to

communicate the state of the game through indicators such as the life bar, the ammo

available if it has been discovered by an enemy, or it can even notify the player. player

whether an action is possible when near an object. An example would be to

25

communicate to the player when he can make use of the Parkour or the Climbing

System.

What is more important is that there is a transition between the intro video of the game

and the game itself. This requires the implementation of a Main Menu where the player

can start or resume a previous game thanks to the Save/Load Game System.

COULD

Vehicles: Given the size of the game's proposed level, the inclusion of vehicles such as

SUVs, trucks, and tanks could enhance the player's ability to traverse the map and

expand the combat system.

Bullet time: This mechanic could be incorporated when the player has been discovered

by an enemy. The mechanic itself consists of giving the player a chance to get rid of an

enemy before it triggers the alarm.

First person perspective: In addition to adding an over-the-shoulder aiming camera to

improve player perspective, a third first-person camera could be implemented to further

improve the aiming mechanic, especially when bullet time kicks in upon being spotted

by an enemy.

Boss Stage: The project is designed to contain a character identified as a boss but the

design does not contemplate that there is a long one-on-one fight with different phases.

Although it could have a fight of these characteristics, the boss stage of this project

would be like eliminating one more enemy with the accompaniment of some cinematic

that helps to distinguish the moment of the game with some relevance.

Secondary Questline: The incorporation of subplots and secondary missions into the

game's plot would enrich the gameplay and the narrative experience with the inclusion

of extra characters and missions.

Collectibles: Some of these side quests could be to collect collectibles that support the

game's narrative by explaining past events during the war. These objects could be

letters, photographs, coins, cassette tapes, or other objects that upon examination would

tell a piece of the story.

Achievement System: The use of achievements in video games provides several

benefits, including enhancing the player's experience by motivating them to explore and

complete the game's content, providing a sense of accomplishment, and encouraging

replayability. Achievements also promote competition among players and can serve as a

means of social interaction and communication within the gaming community.

26

Development methodology

This project is characterized by an Agile development methodology, which is

necessitated by the need for flexibility and an iterative approach that can adapt to

changing project needs. The project iterations have been conducted monthly, with

periodic reviews of priorities to address evolving requirements and looming deadlines.

Due to the large amount of content and features that must be implemented, the project

will be developed using the agile with kanban methodology since it allows different

functions to be developed in parallel without the need to have others completely

finished. Thus, if there is some kind of stagnation in the development process when it

comes to producing a specific implementation, you can start with another task in order

to speed up the process and increase productivity by managing the short period of time

to develop the prototype. Due to the complexity of the project for a single person, the

agile methodology also allows flexibility in certain implementations that were planned

but may not be implemented due to lack of time. In the same way, other functionalities

can be added in the middle of the development process since the project will be

constantly tested and an attempt will be made to balance its needs.

The development progress will be planned in stages where each stage will cover a series

of needs based on the MoSCoW analysis. These stages are: Player Control Stage,

Level Design 1, Environment Interaction Stage, Enemy and AI Implementation,

UI, Object Interaction, Level Design 2, Sound Stage, Graphics and optimization

Stage. At this point, and assessing the time remaining until the delivery date, we will try

to add other technical implementations and improvements.

In the Player Control Stage, basic player functions will be implemented to be able to

move around the level and perform actions typical of a stealth game such as walking,

running, crouching, sneaking, lying down, crawling, aiming with the weapon, shooting

and reloading.

In the first part of the level design, a suitable environment will be created so that the

player's movements are adjusted to the desired gameplay. Objects such as destructible

light bulbs, objects to cover the player with, and spaces to hide in will be a priority in

this first phase of level development.

The next milestone will be the Environment interaction to expand the player's actions

in the scene and have a much more complete Player Control. Actions such as taking

cover, jumping over obstacles, climbing ladders and walls, grabbing the enemy,

executing the enemy, and carrying the enemy's body will be implemented in this stage.

The next objective to tackle is the implementation of enemies and advanced Artificial

Intelligence which will go through two phases. In the first, enemies and a simple state

machine will be implemented that will include basic behaviour such as IDLE,

27

PATROL, ATTACK, CHASE, CAUGHT, and DEATH. In the second phase, more

advanced behaviours will be implemented that will add realism to the behaviour of

enemies on stage. These advanced behaviours are searching the player, reacting to

auditory triggers, analyzing unexpected objects in the scene, and perfecting the sight

areas by different levels.

Once the Artificial Intelligence is done, the User Interface will be implemented and it

will ensure that all the indicators work correctly plus the implementation of the

inventory system so that the player can quickly select equipment with the controller

shortcuts.

The next set of implementations corresponds to the Object Interaction, which includes

a series of interactions between the player and various objects such as Radio, Camera,

Computers, doors and locked doors, containers, lockers, bullet casings, Drone, light

bulbs, explosive barrels, and vehicles. Some of these features will have to be partially

implemented during the first phase of level design, such as light bulbs and doors. The

rest will be implemented progressively depending on the degree of priority that each

item had in the game. The least priority but no less important would be the

implementation of vehicles, which does not have a relevant impact during the course of

the game and its objectives but adds extra fun to the final product.

Object Interaction Priorities:

Item High Priority Medium Priority Low Priority

Radio X

Camera X

Computers X

Doors X

Locked doors X

Containers and

lockers

X

Bullet casings X

Drone X

Light Bulbs X

Explosive Barrels X

Vehicles X

After having implemented the high and medium-priority objects, the second phase of

the level design will begin to be developed, which will consist of making sense of the

game's narrative. Designing missions, puzzles, and a series of tasks so that the player

feels that what he is playing has a ludonnarrative harmony. In this phase of the project,

we will also try to add cut scenes to reinforce that feeling of living a story but this

feature will be considered low-priority until other more needed features have been

implemented.

28

Sound is undoubtedly one of the most important features to provide feedback to the

player. It's also an important part of the experience as it accompanies the player's

emotions and somehow sub-communicates part of the story. The game will necessarily

have music and sound effects as it is an important element in the Artificial Intelligence

design, but it will not be fully implemented until more advanced stages of production.

After the implementation of the audio, we will try to improve the game visually with

the application of shaders and particle effects such as explosions, rain, smoke, and other

effects such as night vision goggles to bring the environment where the story takes

place to live. It will also try to optimize the game so that the program runs at a stable

frame rate and memory space is optimized.

The project management will be supported by a Kanban board that trello.com offers for

free. The different blocks of tasks mentioned above are organized in order of priority

and with a start date and an approximate date to finish said block. The Trello application

itself automatically generates a Gantt chart after having specified these dates as can be

seen in the images. Check the link for more detailed view:

https://trello.com/b/iss6sd77/final-year-project/timeline

https://trello.com/b/iss6sd77/final-year-project/timeline

29

30

4. Game Design

Conceptual Design

Theme

The game is set in a dystopian alternative world where Nazi Germany emerges

victorious in the D-Day Battle of World War II. They successfully conquer Europe, the

United Kingdom, and a portion of the Soviet Union and after years of warfare and

casualties, the involved nations come to a truce where the Third Reich, alongside its

puppet governments, establishes itself as a dominant European empire.

Despite agreeing to a ceasefire with Americans, strained relations persist between the

United States, the Soviet Union, China, and Nazi Europe. This cold war atmosphere is

exacerbated by the presence of nuclear weapons worldwide.

Storyline

The story follows a special SIS agent who is tasked with infiltrating a Nazi military base

in Iceland to verify if the Nazis have deployed nuclear weapons, obtain secret

documentation, and eliminate the SS officer in charge. In the first act, the agent

successfully infiltrates the base despite facing numerous challenges and obstacles. The

second act focuses on the agent's attempt to find the Nukes, eliminate the SS

commander, and retrieve the secret documentation, which is filled with dangerous

encounters and unexpected twists. The final act reveals that the Nazis not only have

deployed nuclear weapons but also possess a secret weapon known as the Arma X,

capable of emitting a powerful electromagnetic pulse that disables all electronic devices

within a given radius. The agent successfully completes the mission, but the future

remains uncertain as the world tensions continue to escalate.

31

QUESTLINE

Reach the perimeter of the base undetected

Find a way to penetrate the base

Locate the SS commander's office

Find the nuclear weapons

Eliminate the SS commander

Retrieve the secret documentation

Escape from the enemy base

Game Mechanics

The game prioritizes stealth-based tactics and strategy to navigate the game's

environment, which is patrolled by AI-controlled enemies. The player possesses a

versatile skill set that enables them to move through the terrain and overcome physical

obstacles, including climbing walls, pipes, and railings. The player can also navigate the

environment in different positions such as standing, crouching, and crawling, which

allows for stealthy infiltration. The game emphasizes noise manipulation as a vital

component of gameplay, which allows the player to distract enemies with sound-

generating actions like shelling, stone-throwing, or bottle-throwing.

If detected by enemies, the player has access to an array of lethal weapons, including

assault rifles, shotguns, sniper rifles, grenades, and rocket launchers. The player's

primary tool for stealth eliminations is a silenced pistol, and non-lethal takedowns are

possible by executing enemies from behind when they are distracted. The game also

allows players to conceal corpses and themselves in containers, lockers, and boxes to

evade detection and disorient enemies.

In addition, the game offers vehicular transportation options, such as off-road cars,

trucks, and tanks, to enhance the gameplay experience and expedite travel.

32

Appearance

In terms of appearance, the game features highly-detailed and immersive environments,

which are rendered in realistic and visually-striking graphics. The game's setting is often

dark and gritty, with a focus on industrial and military themes, creating a sense of

tension and danger for the player. The player character is typically equipped with gear

and clothing appropriate for stealth and combat, including camouflage and body

armour. The game also includes a variety of enemies, each with distinct appearances

and behaviours, adding to the game overall immersion and realism. Additionally, the

game features cinematic cutscenes and scripted events, further enhancing the visual and

narrative aspects of the gameplay experience.

Main character in front of an enemy soldier (Training room)

Jumping out a window. Parkour mechanic.

33

GUI

The graphical user interface (GUI) is an essential component of video games that

provides players with a way to interact with the game's world and mechanics through

visual and interactive elements. It includes menus, buttons, icons, and other elements

that facilitate navigation, control, and customization. The GUI is crucial for player

engagement and immersion, as it allows players to understand the game's mechanics

and objectives, access game options and settings, and monitor their progress. A well-

designed GUI can enhance the player's experience, make the game more accessible, and

improve usability.

App navigation

The game aims to have a UI that offers the player all the necessary information during

the game. In one corner it will have four quick-access slots for items such as weapons or

gadgets that the player has equipped in those spaces. Just below a health bar indicating

the player's life and could even incorporate a stamina bar that decreases when the player

sprints or climbs.

In the right corner there is a radar that could help locate nearby enemies while the two

bars above it would be indicators showing the level of light exposure and the level of

noise the player is generating.

In the centre, messages would appear indicating to the player when it is possible to

perform an action such as opening a door, reloading ammo, performing a parkour

action, climbing, and any other interaction in the level.

34

In-game UI sketch

Sketches of icons that could appear on the screen to perform actions and other indicators.

35

Level Design

The level design is intended to emulate the Icelandic coastline as it is a requirement of

the narrative that events take place in this part of the world. The level begins with a

cinematic that introduces the mission to the player who can listen a conversation

between the protagonist and an allied colonel.

The game starts at the bottom of a cliff with no enemies. This is a fact that is not

accidental since the intention of being alone on the cliff is to give players the

opportunity to experience the controls. Some objects have been placed so that the player

can intuitively discover the Parkour System.

Another reason why the starting point is at the bottom of a cliff is to also introduce the

climbing mechanic as soon as possible so that the player realizes that there are a variety

of mechanics and can become familiar with them.

Once they climb the cliff, there is a wooded area with grass and trees that will serve to

hide from some enemies that patrol that area. In this way, the stealth mechanics that

characterizes the game is introduced.

36

From this point on, the player has the option of going to the access door guarded by a

guard or going down another cliff where they will meet the walls of the enemy base.

The first option is designed so that the player understands that they must cause the

guard to leave his post with the noise mechanic.

On the other hand, the other option invites exploration and finding a conduit that allows

the player to cross the walls of the underground enemy base.

Once inside the base, there will be many more enemies and other dangers such as light

sources and surveillance cameras.

At this point the player has to cautiously explore the level to find the objectives

although cinematic will be triggered that give the player clues where to go. There will

also be the option to contact by radio, which will consist of pressing a button so that the

colonel reminds us of the next objective.

Once all the objectives have been met, the player must go to a hangar and get on a plane

to escape, closing the game's narrative with a tense action scene full of enemies

shooting.

37

Technical Design

The present diagram demonstrates the current state of technical design employed in the

project concerning implementing the essential mechanics required for the complete

movement of the playable character. The diagram shows the flow of data between

various scripts which enable the character to navigate through the level by utilizing the

Parkour System and Climbing System.

The diagram outlines the course of data flow leading to the PlayerMovement script,

responsible for controlling the character's motion, administering animations, and

managing the diverse stances, such as from standing to crouching and other states.

The Parkour System is comprised of three scripts, implemented as classes inheriting

from distinct parent classes. The Parkour controller inherits from the Monobehaviour

class, whereas the ParkourAction class inherits from the ScriptableObject class.

Additionally, the VaultAction class, which only overrides the CheckIfPossible()

function, inherits from the ParkourAction class.

Conversely, the Climbing System comprises two scripts, namely the ClimbController

and the ClimbPoint. Both systems interact with the EnvironmentScanner script, which

utilizes raycasts to detect interactable objects present in the scene.

38

5. Implementation

The most prominent implementation of this project so far is the Parkour System and the

Climbing System.

Parkour System

The Parkour System is a series of animated actions that the player can perform by

pressing a button in front of different types of objects. Some of these actions are

“StepUp”, “JumpUp”, “ClimbUp”, “VaultFence” and “WallClimb”.

Each action has a different animation and these are triggered depending on the

minimum and maximum height of each object. In addition to distinguishing objects by

height, it also identifies objects by Layers and Tags since there are objects that have a

similar height range but require different animation.

For this, the player character needs to communicate with the environment and receive

and manage the different data it receives from the environment. This is achieved with

the implementation of a scanner that allows the player to scan the environment thanks to

the raycast, which informs through a boolean if it has hit an object or not which must

have a LayerMask called "Environment".

For this, two scripts are initially needed, one that scans the scenario and sends the

received data, and another that receives this data to determine what to do with it.

The EnvironmentScanner Script contains the public function ObstacleCheck() which is

called from the ParkourController Script. This function has an instance of a data holder

39

of type struct that sends data to determine if the object has been raycast. The

ObstacleCheck() function also checks the height of the struck object. It does this by

casting a second raycast up from the point where the object was hit when the first

raycast returns true. This second raycast has a greater length and determines what

maximum height it scans, in this case, the length of the second raycast is 5 meters.

The ParkourController Script checks in its Update function if this boolean is true or

false. If true then it activates the parkour action, telling the Animator Component which

animation to play and briefly disabling the Move() function of the PlayerController

script which will prevent the player from moving while the action is taking place.

Notably, the Parkour Controller script also disables the Character Controller Component

to prevent the collider or gravity from affecting the animation.

Scriptable Objects

The different animations based on the height of an object are triggered by creating a

scriptable object for each action the player character needs to do. A scriptable Object is

a data container that allows the storage of the necessary information for each animation.

In this way, objects that contain a certain animation with certain parameters can be

created without the need to be coding each parameter for each animation in a

Monobehaviour script.

To start implementing different actions in the parkour system, it is necessary to create a

script called ParkourAction inherited from the ScritableObject class. This script

contains the data, variables, and parameters necessary to play any animation related to

the Parkour System. This script specifies data such as the name of the animation, the

minimum, and maximum height at which each animation must be triggered, the label of

the obstacle, booleans so that the agent can rotate or not depending on the animation, or

40

even the option to add an animation post-delay action to regain control of the player

character in case multiple animations are combined and it is necessary to wait for the

animations to complete before the player can move the character again.

Once implemented, it is possible to create ParkourAction instances from the Unity

editor.

After creating different actions, the ParkourController script must handle them. To do

this, it is necessary to declare an action list in the el script. The ParkourController will

have to iterate through each action every time the ObstacleCheck() function returns true

and the button is pressed.

To determine that an action is possible, the ParkourAction script contains a function

called CheckIfPossible() that takes as parameters the data obtained by the raycast and

the player transform. This function calculates the height of the obstacle by subtracting

the distance between the Y position of the height hit point by the Y position of the

player. If the calculated height is between the minimum and maximum values assigned

to the asset, then the action is possible. But in case obstacles of the same height require

different actions, it is necessary to apply a tag to the obstacle and assign said tag to the

asset so that when the ParkourAction script compares the string it knows what the

object is.

So a layer mask is used to determine which objects are interactive and tags to determine

the obstacle type, for instance, a step or a fence with the same range of height.

41

Target Matching technique

At this point, the player character can position himself on top of different obstacles with

different heights playing different animations but there is still a problem. And it is that

the animations are generic and always reproduce the same movement without adapting

well to the measurements of the obstacle, so there are clipping problems, that the hand

does not position itself on the edge of the obstacle or the foot stops before touching soil.

To work around this problem, Unity provides a method known as Target Matching.

With this technique, it is possible to achieve that the animations match obstacles of

different dimensions without the need to implement different animations for each

obstacle.

To implement Target Matching, it is necessary to expand the ParkourAction script by

adding float variables that determine at which frame of the animation a certain body part

is required to match the desired position. In some cases target matching will not be

required, for this reason, it is also necessary to apply a boolean that determines whether

or not an asset should apply target matching. You also need a variable of the

AvatarTarget type to be able to select which part of the body you want to match with

the obstacle in a certain frame. The AvatarTarget is an enum that communicates with

parts of the rig like root, body, left foot, right foot, left hand, and right hand. It also has

a variable of type Vector3 that allows you to match and correct some animation position

definitions in order to avoid the clipping effect with obstacles. All these variables are

accessible through the asset inspector created by the ParkourAction script.

To know which frame should be set as Match Start Time and Match Target Time, you

have to select the desired animation and inspect it in the inspector timeline. For

example, the Match Start Time would be the frame where the animation begins to jump,

15% of the animation, while the Match Target Time would be the frame where you

want to place the desired body part, a value of approximately 33% animation. These

percentage values must be normalized, so the final value to be assigned to the action

asset would be 0.15 and 0.28.

42

Code Snippets

Environment Scanner script

The EnvironmentScanner script contains three methods to detect obstacles, ledges, and

climbable ledges in the environment around the player character.

The ObstacleCheck() method checks for obstacles in front of the game object, and if an

obstacle is detected, it performs a secondary check to determine if the obstacle can be

climbed. This method returns a struct called ObstacleHitData containing information

about the detected obstacle and its climbability.

43

Parkour System script

The ParkourSystem script contains variables and methods that are used to enable the

player to perform parkour actions in the game. The script relies on the

"EnvironmentScanner" script to detect obstacles in the player's path and the

"PlayerMovement" script to control the player's movement and actions.

The "Update" method is called every frame and contains code to detect player input and

obstacles in the player's path. If the player presses a specific button and is not currently

performing another action or hanging from a ledge, the script checks if there is an

obstacle in front of the player and if any of the parkour actions in the list of

"parkourActions" are possible based on the player's position and the obstacle's

characteristics. If a parkour action is possible, the script starts a coroutine to execute the

action.

If the player is currently on a ledge and there is no obstacle in front of them, the script

checks if the player should automatically jump down based on the height of the ledge

and whether the player is pressing the jump button. If the conditions are met, the script

starts a coroutine to execute the "jumpDownAction".

44

The "DoAction" co-routine is used to execute a parkour action. It temporarily disables

the player's control, plays the appropriate animation, and then re-enables the player's

control. It also supports target matching, which adjusts the position and rotation of the

player during the animation to match a specific position or object in the game world.

This co-routine function is used to play an animation and perform specific actions

during the animation playback. It takes in several parameters such as the name of the

animation, whether to rotate the player towards the obstacle, delay after the action is

completed, etc. During the execution of the co-routine, it sets a bool flag InAction to

true, plays the animation, rotates the player if needed, and performs target matching if

specified. Once the animation is finished, it waits for the specified post-delay and sets

the InAction flag to false.

45

Parkour Action script

This code defines a scriptable object called "ParkourAction" that is used in the parkour

system. It contains various properties related to the action such as the animation name,

obstacle tag, minimum and maximum height required to perform the action, whether the

player needs to rotate to face the obstacle, post-action delay time, and target matching

related properties.

The method "CheckIfPossible" checks if the parkour action is possible given the

obstacle hit data and player's position. It returns a boolean value indicating if the action

is possible.

Other properties such as TargetRotation, MatchPosition, and Mirror are used to store

the values of the target rotation, match position, and mirror state of the action,

respectively.

46

Climbing System

To implement the climbing system, the first thing you need to do is create climbing

objects and put a specific tag on them so that the raycast can differentiate between

climbing and environmental objects related to the parkour system.

To detect these new objects in the scene, it is necessary for the scanner to detect them

with another series of raycasts that have been implemented in the upper part of the

character so that it can detect ledges at different heights.

Once it detects edges, the player character jumps and hangs until new input is received.

To do this, target matching technique is used so the character's animation feels realistic

and his hands are well placed to the edge. While the character is hanging and preventing

another movement code from being executed, a boolean (isHanging) is applied which

determines whether or not the character is climbing edges.

To make the character jump from one edge to another, a climbing network has been

implemented that allows communicating edges, and the character can only move within

this network while in the hanging state.

The ledges are joined by two types of lines, green and white. The green ones indicate

that this path can be transitioned in both directions while with the white ones, the

character can only move in one direction. In other words, the player character is able to

move from a high edge to a lower edge but not the other way around if the previous

edge is too high.

47

This is achieved by adding a script to each ledge called a climbPoint that indicates

which direction the character can move with a Vector2. This script also has a list of

neighboring edges where the character can jump to or move from the current

climbPoint. Therefore two types of climbPoints are needed, jumpable ones and

moveable ones in case an edge has two or more climbPoints. This script also determines

if the climbPoint where the character is is a point that the character can mount or not.

One of the limitations of this system is that a climbPoint can only have a maximum of 4

connections when moving between climbPoints. With a Vector2 the number of

directions is limited to the right (X = 1), left (X = -1), up (Y = 1), and down (Y = -1).

Once the climbing network has been set, and the character can jump to the first

climbPoint, another input direction has been coded in the Climbing Controller script for

when the character is in the isHanging state. This input detects in which direction the

player wants to move and if there is a climbPoint in that direction it will jump or move,

depending on its type, towards the neighboring climbPoint and convert the neighboring

climbPoint to the current climbPoint to determine which is the new neighboring

climbPoint.

48

Code Snippets

Environment Scanner script

The LedgeCheck() method checks if there is a ledge within a certain range in the

direction that the game object is moving. This method returns a struct called LedgeData

containing information about the height and angle of the detected ledge.

The ClimbLedgeCheck() method checks if a climbable ledge is within range in the

specified direction. This method returns a boolean indicating whether a climbable ledge

is detected, and it also outputs a RaycastHit struct containing information about the

detected ledge.

49

Climb Point script

The CreateConnection method of the ClimbPoint class is used to add a new Neighbour

to the neighbours list. A Neighbour object represents a connection to another

ClimbPoint, along with a direction vector, a connection type (either Jump or Move), and

whether the connection is two-way.

The GetNeighbour method is used to retrieve a Neighbour object from the neighbours

list based on a given direction vector.

50

Climb Controller script

This script is used to handle player climbing mechanics. It uses an

"EnvironmentScanner" component to detect climbable objects, and a

"PlayerMovement" component to control the player's movement.

When the player is not hanging from a ledge, the script listens for input to trigger a

jump to a nearby climbable ledge, and when the player is hanging, it listens for input to

perform various actions such as jumping to another ledge or shimmying along the

current one.

The script uses co-routines to handle animations during these actions, and includes

functions to calculate and set the position of the player's hands during animations.

51

6. Testing and Evaluation

Testing and evaluation are critical aspects of any software development project. They

ensure that the software meets the requirements and functions as intended. This section

provides an overview of the testing and evaluation process for the project, including test

case design, debugging, bugs found, player feedback, and evaluation.

Periodic testing has been performed on the project following the implementation of new

features or scenarios to guarantee their expected functionality. The project has

experienced some performance issues at certain times due to an increase in content. To

address this, optimization efforts were made incrementally, although these were not

exhaustive due to time constrains.

Below are some test cases that have been carried out with different mid-range and high-

end equipment. These cases cover functionalities such as the introductory video of the

game, the main menu, the game cinematics and its transitions between scenes and

finally the fundamental implementations of this project, the Parkour System and the

Climbing System.

Test Cases

Test Case #1

Test scenario Test case Expected result Actual result Pass/Fail

Check video

functionality

Check

video

frame rate

and sound

Video plays

smoothly and

sound plays

properly

Video plays smoothly

and sound plays

properly

PASS

Check if

video can

be skipped

through

input

Game transitions

to the Main Menu

Screen

Game transitions to

the Main Menu

Screen

PASS

Check

transition

to Main

Menu

Game transitions

to the Main Menu

Screen

Game transitions to

the Main Menu

Screen

PASS

52

Test Case #2

Test scenario Test case Expected result Actual result Pass/Fail

Check Main

Menu

functionality

Check

navigation

through

Gamepad

input

Navigation

responds to

gamepad input

and highlight the

buttons

Navigation responds

to gamepad input and

highlight the buttons

PASS

Check

New

Game

button

App transitions to

the loading screen

and plays

cinematic.

App transitions to the

loading screen and

plays cinematic.

PASS

Check

Training

button

App transitions to

the loading screen

and starts training

level

App transitions to the

loading screen and

starts training level

PASS

Check Exit

button

app closes

correctly

app closes correctly PASS

Test Case #3

Test scenario Test case Expected result Actual result Pass/Fail

Check

cinematic

functionality

Check

cinematic

frame rate

and sound

Cinematic plays

smoothly and

sound plays

properly

Cinematic plays

smoothly and sound

plays properly

PASS

Check if

cinematic

can be

skipped

through

input

Cinematic is

skipped and

user has control

over the

character

Cinematic is skipped

and user has control

over the character

PASS

Check any

graphical

bug or

issue

Cinematic runs

without any

graphical issue

Cinematic runs with

minor graphical issues

on the water object.

High waves show

underwater textures and

cover partially the

character.

FAIL

53

Test Case #4

Test scenario Test case Expected result Actual result Pass/Fail

Check

Parkour

System

functionality

with mid-

range

Graphics

Card

Check

functionality

in Training

level

Parkour System

works smooth
Parkour System

works smooth
PASS

Check

functionality

in Mission

level with

Post-

Processing

Parkour System

works smooth

The character often

ends up under the

texture.

FAIL

Check

functionality

in Mission

level without

Post-

Processing

Parkour System

works smooth

Parkour System

works smooth

PASS

Test Case #5

Test scenario Test case Expected result Actual result Pass/Fail

Check

Parkour

System

functionality

with high-end

Graphics

Card

Check

functionality

in Training

level

Parkour System

works smooth
Parkour System

works smooth
PASS

Check

functionality

in Mission

level with

Post-

Processing

Parkour System

works smooth

Parkour System

works smooth

PASS

Check

functionality

in Mission

level without

Post-

Processing

Parkour System

works smooth

Parkour System

works smooth

PASS

54

Test Case #6

Test scenario Test case Expected result Actual result Pass/Fail

Check

Climbing

System

functionality

with mid-

range

Graphics

Card

Check

functionality

in Training

level

Climbing

System works

smooth

The Climbing

System works

smoothly with very

occasional bugs

PASS

Check

functionality

in Mission

level with

Post-

Processing

Climbing

System works

smooth

The character often

ends up under the

texture.

FAIL

Check

functionality

in Mission

level without

Post-

Processing

Climbing

System works

smooth

The Climbing

System works

smoothly with very

occasional bugs

PASS

Test Case #7

Test scenario Test case Expected result Actual result Pass/Fail

Check

Climbing

System

functionality

with high-end

Graphics

Card

Check

functionality

in Training

level

Climbing

System works

smooth

The Climbing

System works

smoothly with very

occasional bugs

PASS

Check

functionality

in Mission

level with

Post-

Processing

Climbing

System works

smooth

The Climbing

System works

smoothly with very

occasional bugs

PASS

Check

functionality

in Mission

level without

Post-

Processing

Climbing

System works

smooth

The Climbing

System works

smoothly with very

occasional bugs

PASS

55

Bugs

Below there is a table with a list of the bugs found in the different test cases.

The bug report table contains three identified issues. The first bug, identified by bug ID

001, describes minor graphical issues that affect the cinematic experience of the game,

particularly with the presence of high waves that partially cover the character and show

underwater textures. Although this issue is marked as low severity, it is still open and

requires attention from the developer.

Bug ID 002, on the other hand, has a critical severity rating and has been reported by a

player or QA tester, indicating that it affects the game's playability. The issue involves

the character ending up under the texture, which can be frustrating and may lead to a

poor gaming experience. The bug is still open and assigned to Daniel Bellido for

resolution.

Finally, bug ID 003 has a medium severity rating and involves occasional bugs with the

Climbing System of the game, particularly with a mismatched animation. This issue has

been reported by the developer and is still open. The bug was reported on 5th March

2023, and it has not yet been resolved.

In summary, the bug report table provides an overview of the identified issues in the

project, including a brief description of each issue, its severity rating, status, and the

individuals responsible for reporting and resolving them.

Bug

ID

Bug

Description

Bug

Severity

Bug

Status

Bug

Reporter

Bug

Assigned

to

Date

Reported

Date

Resolved

001

Cinematic runs

with minor

graphical

issues High

waves show

underwater

textures and

cover partially

the character.

Low

Open

Project

Supervisor

Daniel

Bellido

02/04/2023

-

002

The character

often ends up

under the

texture.

Critical

Open

Player/QA

Tester

Daniel

Bellido

25/04/2023

-

003

The Climbing

System works

with very

occasional

bugs. Target

missmatched

Medium

Open

Developer

Daniel

Bellido

05/03/2023

-

56

User Feedback

Obtaining feedback from players during the testing of a game is a critical step in the

development process. It helps identify bugs and issues that may have been overlooked

by developers, as well as provides insight into how players interact with the game. This

feedback can then be used to improve the game and enhance the overall user

experience. Additionally, involving players in the testing process can also help build a

community around the game and increase its popularity. Overall, player feedback is a

valuable resource for game developers and should be incorporated into the testing

process whenever possible.

For this project, the players wanted to get involved in the testing phase so that they

could offer another point of view and report any problems found in the game.

For this reason, a brief survey has been created that includes various questions about

their tastes, information about their devices, and personal experience with the prototype.

Unfortunately, the participation has not been very high but enough to confirm certain

problems with the project. The survey consists of 14 questions and a total result of 7

answers has been obtained.

The first question in the survey was to find out a little about the audience and their

preferences. For this reason, the first thing asked was what their preferred platform for

playing video games was. And as can be seen in the figure, 57.1% of gamers prefer to

play on video consoles compared to 42.9% who prefer to play on a PC.

57

The second question asked about the type of genre they preferred to play and here,

despite being a small group of people, the answers were very diverse. Carefully

analyzing the graph we can conclude that the RPG is the most loved genre, followed by

the FPS, while other genres such as horror, strategy, and stealth are in the minority

compared to those previously mentioned.

The third question in the survey was already beginning to address issues more related to

the project and that is that since it is a stealth game, it seemed interesting to ask if the

stealth genre was well received. The response from the users was quite positive since

71.4% of those surveyed answered yes to whether they liked the stealth genre, while

14.3% answered no and the other 14.3% answered maybe.

58

The next question is intended to find out what type of device players prefer to use to

play games as this is an important element for many gamers and something to consider

when developing games. 71.4% responded that they prefer to use a gamepad while

28.6% are more inclined to use a keyboard and mouse.

The fifth question introduces the narrative element and asks if players are interested in

this type of approach. Responses are on a scale of 0 to 10 where 0 means that the

narrative is not important while 10 mean that the narrative in a video game is very

important.

In this sense, the vast majority, 57.1%, consider that the narrative in a video game is

very important, while 42.9% of those surveyed consider that the narrative is simply

important.

59

As for the narrative proposed by Arma X, users are asked how easy is to follow the

narrative of the prototype, where 10 means it has been easy to follow and 0 means very

difficult.

42.9% of those surveyed have answered that the narrative has been very easy to follow,

followed by 28.6% who have responded with a 9 out of 10, another user considers that

it has been easy and another has rated this question with a 5 out of 10.

After knowing the interest that the respondents have for the narrative, it is time to get

into issues more related to the technical aspect. For this reason, users are asked to share

information about their computer specs in order to assess the impact it may have on

game performance on their devices.

Of the 6 answers obtained, it can be seen how there is a technical tie in terms of

graphics cards since two of them could be considered low-end, another two mid-range,

and the RTX3070 and RTX3090 are crowned as the only high-end graphics cards.

Therefore, it is expected that many of the respondents will experience some kind of

problem with the prototype.

60

The next question asks players what frame rates they have experienced with the

prototype. The answers show that only two players have been able to enjoy the game

stably while the rest have suffered a frame rate of less than 30 reaching the minimum of

15. It can be deduced that the only people who have been able to enjoy the game are

those who have the RTX30 on their computers.

Given the optimization problems and the large number of objects at the main mission

level, a study was conducted to evaluate the loading sensation experienced by users.

Participants were asked to rate the loading time of the game on a scale of 1 to 10, where

a rating of 1 indicated a fast load time and 10 indicated a very slow load time. The

findings indicate that most users reported a relatively fast loading time, while a minority

of users reported experiencing some difficulty with loading.

61

The survey included a question about the compatibility of the visual content of the

prototype with the style of the story it conveys. The results indicate that 85.7% of the

participants confirmed the compatibility while the rest of the respondents indicated their

uncertainty regarding the compatibility.

Another inquiry aimed to determine the participants' willingness to recommend the

game to their acquaintances despite the prototype's drawbacks. The findings show that

57.1% of the participants were willing to recommend the game. However, 42.9% of the

respondents expressed their hesitance to recommend the game, indicating that they

would only recommend it if the prototype was more polished.

62

Evaluation

As can be seen in the different cases exposed, the tests have been carried out with

different equipment to check if the bug was caused by a software error or a lack of

performance by the hardware. In this series of cases, some bugs are repeated

systematically in mid-range equipment.

This bug started right after I implemented the volume post-processing, so this was

initially suspected as the cause of the problem. After several tests, code, and component

reviews, the post-processing volume was disabled to confirm if this was what caused

the character to stop colliding with the terrain and fall into the void.

Later, it was tested again in another scene and after checking that there were no errors, it

was concluded that the post-processing was undoubtedly the cause of the problem.

From that moment on, the question was whether this problem was replicated in

equipment with better performance, so these same test cases were carried out at

Kingston University where the equipment has high-end graphics cards. There the results

were surprisingly good and the game ran at a stable 60fps at all times and it seemed that

the game did not suffer from any kind of lack of optimization.

The next step was to rule out that the problem only occurred in the private computer

where the project was regularly developed. For this reason, a build of the project was

made available to some users so that they could test the game and could give me

technical data about their devices.

The results of the survey showed how only a third of the users were able to run the

game without problems while the rest of the players had the expected critical bug

caused by poor level optimization and post-processing resources.

In this sense, it is indisputable that the project needed exhaustive optimization work and

to implement the graphics adjustment functionality so that low-performance devices can

run and enjoy the game without problems.

To summarize, the analysis shows that the project has performance issues on modest

computers, indicating a need for further investigation and optimization. The use of

profiler tools to identify spikes that impact game performance is recommended, along

with optimizing every aspect of the project. Additionally, the implementation of

graphics adjustments as additional options to the game is necessary, given the varied

components of players' computers as shown in the survey results. Customizing the game

to meet the needs of each device is crucial to enhancing the game experience.

63

7. Legal, Social, Security and Ethical Issues

PEGI

The game is intended to present explicit violence against human characters, such as

shooting them, stealthily executing them by suffocation, or the use of explosive

weaponry such as grenades, being run over by vehicles or simply being beaten to death.

According to the description of the PEGI content, the game would fall into the PEGI 16

or PEGI 18 rating. The game could also present some degree of bad language which is

allowed in both PEGI 16 and PEGI 18 but the element that rules it out to enter the PEGI

16 category and definitively grant it a PEGI 18 category would be the inclusion of

political elements and symbols that promote hatred, racism, and homophobia, due to the

historical background through which the narrative of the game takes place.

Copyright

To streamline the development process, the project will use third-party assets purchased

from the official Unity store. In accordance with Unity policies, once you have

purchased an asset from the official assets store, the asset becomes your property and

therefore you can market your game royalty-free.

Regarding the use of the graphics engine, Unity allows you to sell any product

developed with the personal edition of the engine at no additional cost unless the

product generates revenues greater than $100,000 in a 12-month period.

The use of animations downloaded from the Mixamo website, Adobe allows the use of

its assets in commercial products such as video games. What is totally unauthorized is

the resale of directly downloaded Mixamo assets and packages.

In order to use models and animations developed in Maya, the use of the student version

for commercial purposes is strictly prohibited. In order to trade assets produced with

Maya, a paid license is required.

Ethical Issues

Due to the nature of the events that occurred during the 20th century, it is

understandable that some people may experience rejection for the content related to

64

Nazism shown in the video game, even that it could be banned in some countries such

as Germany, although Germany no longer It has censored the use of symbols of

unconstitutional organizations since 2018 and has removed old games such as the

Wolfenstein saga, Mortyr, and Commandos from its List of Harmful Media.

Although the game is not expected to be extremely violent, additional problems can be

generated by the violence that the game may contain. In this aspect, the case is much

more diffuse since some countries have different regulations on the violence exposed in

video games. Some of these countries are Venezuela, Brazil, China, Japan, South Korea,

Australia, Malaysia, Singapore, Germany, United Kingdom, Saudi Arabia, United Arab

Emirates, Iran or Pakistan, which have even censored or changed some games to suit

their markets.

Data Security

The game will not be an online game and will not require any type of personal data, so

no data security policy is applied since they are totally unnecessary.

65

8. Critical Review and Conclusion

Achievements

This project has produced a comprehensive collection of individual accomplishments

spanning multiple domains, encompassing technical and design aspects. It is noteworthy

to highlight that the mere act of conceptualizing and developing a game of this

magnitude represents a significant accomplishment, as it poses a formidable challenge.

This project is particularly remarkable since it marks my first instance undertaking a

project of such scale. While there remains room for further refinement, I derive a

reasonable degree of personal fulfilment from the current state of the project.

One of the achievements in my Final Year Project is the enhancement of my skills in

the area of gameplay programming, which involved implementing a sophisticated

movement system that could accommodate a substantial number of animations, as well

as developing mechanics such as the Parkour System and the Climbing System.

Furthermore, this skill development facilitated the conceptualization of a more intricate

level design that incorporates an interactive environment replete with objects and

interactive components. Substantial visual enhancements were also implemented,

including particle effects and several post-processing volumes that contributed to the

creation of more realistic lighting in the game.

I am highly content with the opportunity to introduce a narrative design that

significantly elevates the allure of the project. This component encompasses the

integration of a linear story, which is accompanied by an introductory video upon

launching the application, as well as a cinematic opening sequence with dialogues at the

beginning of the game. Moreover, the inclusion of such narrative elements has

facilitated the creation of a Main Menu and loading screen that prioritizes user

experience (UX) design principles.

In short, at the Game Design level, quality documentation development has been

achieved with a Game Design Document, reports, and even online devlogs that help to

understand the work. Without a doubt, the Final Year Project has been a very valuable

experience for future personal and professional work.

66

Areas to improve

Even so, the project has had many problems and requires a lot of research and a lot of

work ahead, as it has been possible to demonstrate in the testing phase carried out by

some classmates. The bad performance of the game on modest computers marks a

turning point in this project and now I have put all my attention to solving this problem

since the optimization of the project is vital to have a good product. Therefore, the game

must enter an optimization phase before continuing to implement features, since if it is

left until the end to optimize the game with all the implementation, it will become an

impossible task to finish. After all, this project is developed with an Agile approach and

requires these iterations for the project to progress.

Another important aspect that could be much better implemented and will undergo an

overhaul is the design and technical implementation of the main character.

At the moment, the numbers of scripts that the character controls are few, and the

PlayerMovement script is in charge of carrying out tasks that go beyond what was

initially planned. This script not only controls the movement of the player but also

controls different player states and a large number of animations. Continuing to

implement features with this design becomes cumbersome and often presents errors that

have to be constantly corrected, which represents a large investment of time invested in

a very inefficient way.

A much more practical, maintainable, and scalable solution would be to create a custom

state machine for the main character that would be able to handle different stances and

animations, as well as different types of movement depending on the state it is in. An

example of two different states of movement would be the default that allows a free

camera to rotate around the player and another aimed state where the camera would be

fixed on the back of the player and the player should use another type of movement

similar to that of the First Person Shooter. However, all the movement code, including

the Parkour System and the Climbing System, has a dependency on a single script and

this poses many complications and errors when trying to add new functionality.

Time Management

The experience of having worked throughout the course with this project has had a

positive impact in many aspects on a personal level; however, there have also been

times in which the project has suffered major development stoppages due to other tasks

unrelated to this project and this has largely frustrated the course of development.

67

Initially, the project had a series of objectives and tasks that were perfectly planned,

even allowing extra time for errors and complications. What were not foreseen are that

other course modules would be as demanding and long as, for example, the parallel

programming project and animation and modelling assignments.

Also, there were some other issues with other team projects that became a waste of

time. In short, I invested more than a month in group project for the narrative

assignment and a month later part of the team wanted to restart the project with another

idea that involved discarding all my work done, which forced me to leave the group and

transfer the narrative project to my Final Year Project.

The requirement to implement narrative and cut-scenes in the project was foreseen but it

was not a priority and due to the problem in the narrative assignment this requirement

became a very high priority since the deadline was very close and I had wasted too

much time with the team project. Therefore it was difficult to incorporate this new

requirement without altering the original plan which implied implementing features

ahead of time in a very haphazard way, which affected and frustrated the

implementation of other requirements such as Artificial Intelligence.

Even so, very hard work has been done to get to this current state, and the best that has

been done with the little time that has been had although I am very frustrated that I have

not been able to implement a basic Artificial Intelligence, a simple combat system and a

questline that allows gamers to enjoy a playable experience.

Personal Learning

Undoubtedly this project has helped me to learn a lot about various topics and to better

understand how to assemble all these various topics in a single project, giving me a

better insight into Game Design and Game Development.

This experience has given me the opportunity to work in much more detail on

documentation and the field of design, something that, in addition to enriching my

knowledge, has made me have a great time.

I have also been able to see more closely and understand how important the role of the

Project Manager is and the need to plan the procedure with the help of tools such as

Trello, Gantt Chart, Git, and the importance of having a blog that communicates the

progress of the project.

I have also learned a lot about testing and its importance in game development, not only

for one person but also for projects carried out by a team. Although my knowledge in

this area has been very basic, I have been able to see with my own eyes the importance

of designing test cases, having a bug report, and, above all, having user feedback.

68

On a technical level, I gained much more knowledge about the Unity engine and many

of its features such as Mecanim, Timeline, Cinemachine, ProBuilder, Particle Effects,

Shader Graph, different render pipelines, and the use of different classes such as the

Scriptable Object, which opened up a new world of possibilities for me when I saw that

I could customize the Unity editor and create more personalized projects. In short, I was

able to put into practice the knowledge acquired throughout all these years at the

university and this project has motivated me to continue learning about more advanced

topics, especially with the development of tools for the engine and about new ways of

programming in Unity.

Future Work

After having run out of time at the university and from the current state of the project, it

is evident that the game needs to be worked on in many aspects and that further research

needs to be done.

First of all, the project urgently needs an optimization process that debugs all the

performance problems. To do this, the Unity profiler tool will be used and an attempt

will be made to identify if, in addition to the volume of post-processing, other factors

slow down the game. Once the project has a decent performance of about 60 frames per

second, basic artificial intelligence based on a simple Finite State Machine will be

implemented.

After that, it will go to a testing phase with a greater scope where more participants will

be tried to receive more feedback. Once the feedback is received, the project will be re-

planned, taking into account the feedback from the users, while at the same time,

research will be carried out on different topics that help the progress of the project.

These investigations to be carried out consist of taking a series of online courses

instructed by the developer Penny de Byl, who has a long history in the development of

video games with Unity. Some of these courses focus on Artificial Intelligence and

cover topics like Goal Oriented Action Planning and Behaviour Trees while other

courses focus on optimization with topics like Entity Component System (ECS).

Once the knowledge has been expanded and an appropriate plan has been developed,

the main character’s code will be refactored, implementing a new system based on State

Machine that provides an optimal, maintainable, and easy-to-scale implementation.

Once this objective has been achieved, the Combat System will be addressed, which

will interact with the basic AI already implemented to test and explore all the

possibilities.

The next step would be to improve the level design, and implement a basic questline

with some more animations so that the game can be minimally playable.

69

Finally, a massive testing phase will be entered again, trying to have a wide reach

within the online communities so that they can test the game and can provide the

necessary feedback to analyze again the needs of the project.

70

9. Research and References

1. 15 countries that ban video games (2016) Expert blog for professionals
in the video game industry. Available at:
https://codeswholesale.com/blog/15-countries-that-ban-video-gamesin-
different-countries/ (Accessed: 20 October 2022).

2. All about: PEGI age ratings (no date) Askaboutgames.com. Available at:
https://www.askaboutgames.com/pegi-age-ratings (Accessed: 20
October 2022).

3. American Experience | PBS (2011) FDR and policing the world: Hitler’s
threat. Youtube. Available at:
https://www.youtube.com/watch?v=FtDxjVCu56E (Accessed: 10 March
2023).

4. Ander, A. C. (2023) Como hacer efecto de voz de radio en Audacity.
Youtube. Available at:
https://www.youtube.com/watch?v=CAqSZDAWjLE (Accessed: 28
March 2023).

5. Aura, C. G. (2020) Cutscene in Unity 3D | Timeline in Unity | CG Aura.
Youtube. Available at: https://www.youtube.com/watch?v=w6lc8svzBms
(Accessed: 28 March 2023).

6. Aversa, D. (2022) Unity Artificial Intelligence Programming: Add
powerful, believable, and fun AI entities in your game with the power of
Unity. 5th edn. Birmingham: Packt Publishing.

7. BBC News (2018) ‘Germany lifts total ban on Nazi symbols in video
games’, BBC, 10 August. Available at:
https://www.bbc.co.uk/news/world-europe-45142651 (Accessed: 20
October 2022).

8. Brackeys (2017a) How to make a LOADING BAR in Unity. Youtube.
Available at: https://www.youtube.com/watch?v=YMj2qPq9CP8
(Accessed: 1 April 2023).

9. Brackeys (2017b) Introduction to AUDIO in Unity. Youtube. Available at:
https://www.youtube.com/watch?v=6OT43pvUyfY (Accessed: 23 March
2023).

10. Brackeys (2017c) START MENU in Unity. Youtube. Available at:
https://www.youtube.com/watch?v=zc8ac_qUXQY (Accessed: 24 March
2023).

11. British Pathé (2011) Hindenburg disaster: Real zeppelin explosion
footage (1937) | British pathé. Youtube. Available at:
https://www.youtube.com/watch?v=CgWHbpMVQ1U (Accessed: 10
March 2023).

12. British Pathé (2014a) Hitler returns to Germany from France (1940) |
British pathé. Youtube. Available at:
https://www.youtube.com/watch?v=g3xRVKkvx9A (Accessed: 10 March
2023).

71

13. British Pathé (2014b) Nuclear (1970-1979). Youtube. Available at:
https://www.youtube.com/watch?v=GUPf9z_QcsQ (Accessed: 10 March
2023).

14. British Pathé (2014c) Selected Originals - Mao In Moscow (1950).
Youtube. Available at: https://www.youtube.com/watch?v=gFLz2juVbY8
(Accessed: 10 March 2023).

15. de Byl, P. (no date) Advanced AI for games with goal-oriented action
planning, Learn @ Holistic3D. Available at:
https://www.h3dlearn.com/course/advanced-ai-for-games-with-goal-
oriented-action-planning (Accessed: 30 April 2023).

16. Can I use assets made in student copy after purchasing maya LT for
commercial (2019) Autodesk Community. Available at:
https://forums.autodesk.com/t5/maya-forum/can-i-use-assets-made-in-
student-copy-after-purchasing-maya-lt/td-p/8889390 (Accessed: 19
October 2022).

17. Carter, R. et al. (2013) Unity 4.X game AI programming. Birmingham:
Packt Publishing.

18. Cuchovasky, A. (2014) La Segunda Guerra Mundial en Color
(Documental completo en español). Youtube. Available at:
https://www.youtube.com/watch?v=jqlSzP1_CEA (Accessed: 10 March
2023).

19. Dean, J. (2023) Unity character animation with mecanim. Birmingham:
Packt Publishing.

20. Discovery, U. K. (2019) How Hitler invaded half of Europe | greatest
events of World War 2 in colour. Youtube. Available at:
https://www.youtube.com/watch?v=rXt8rU97NMQ (Accessed: 10
March 2023).

21. Download Archive and Beta Program (no date a) Dystopia
Soldier, Unity.com. Available at:
https://assetstore.unity.com/packages/3d/characters/humanoids/dysto
pia-soldier-180489 (Accessed: 7 December 2022).

22. Download Archive and Beta Program (no date b) Flooded
Grounds, Unity.com. Available at:
https://assetstore.unity.com/packages/3d/environments/flooded-
grounds-48529 (Accessed: 15 March 2023).

23. Download Archive and Beta Program (no date c) HQ Hangar
Free, Unity.com. Available at:
https://assetstore.unity.com/packages/3d/environments/hq-hangar-
free-212795 (Accessed: 15 February 2023).

24. Download Archive and Beta Program (no date d) Military Outpost
Set, Unity.com. Available at:
https://assetstore.unity.com/packages/3d/environments/industrial/mili
tary-outpost-set-91227 (Accessed: 15 January 2023).

25. Download Archive and Beta Program (no date e) Modern Forward
Military Base Kit, Unity.com. Available at:
https://assetstore.unity.com/packages/3d/environments/modern-
forward-military-base-kit-145564 (Accessed: 15 January 2023).

72

26. Download Archive and Beta Program (no date f) Old
Rowboat, Unity.com. Available at:
https://assetstore.unity.com/packages/3d/vehicles/sea/old-rowboat-
31917 (Accessed: 15 March 2023).

27. Download Archive and Beta Program (no date g) Simple Water Shader
HDRP, Unity.com. Available at:
https://assetstore.unity.com/packages/2d/textures-
materials/water/simple-water-shader-hdrp-207454 (Accessed: 15
February 2023).

28. Ecuador, C. (2014) La batalla de Stalingrado. Youtube. Available at:
https://www.youtube.com/watch?v=i0qu5g2MW6Q (Accessed: 10
March 2023).

29. Fermi, W. (2015) LOS AVANCES ARMAMENTÍSTICOS EN LA
ALEMANIA NAZI. Youtube. Available at:
https://www.youtube.com/watch?v=xQAtU60sSPo (Accessed: 10 March
2023).

30. Free Documentary-History (2022) The Rise of Adolf Hitler | Germany’s
Fatal Attraction: Part 1 | free documentary history. Youtube. Available
at: https://www.youtube.com/watch?v=oenHZd8H0XA (Accessed: 10
March 2023).

31. Game Maker’s Toolkit (2017) What makes good AI? Youtube. Available
at: https://www.youtube.com/watch?v=9bbhJi0NBkk (Accessed: 1 May
2023).

32. Game Maker’s Toolkit (2020a) How do stealth games deal with
detection? - School of stealth part 3. Youtube. Available at:
https://www.youtube.com/watch?v=uF6c8KJuuEk (Accessed: 1 May
2023).

33. Game Maker’s Toolkit (2020b) How stealth game guards see and hear -
School of stealth part 1. Youtube. Available at:
https://www.youtube.com/watch?v=Ay-5g36oFfc (Accessed: 1 May
2023).

34. Game Maker’s Toolkit (2020c) The five types of stealth game gadget -
School of stealth part 2. Youtube. Available at:
https://www.youtube.com/watch?v=QLWC081dDpc (Accessed: 1 May
2023).

35. Hight, J. and Novak, J. (2008) Game Development Essentials: Game
project management. Delmar Pub.

36. de la Historia, G. M. (2022) El sábado negro - Bombardeando los
muelles de Londres durante la Segunda Guerra Mundial. Youtube.
Available at: https://www.youtube.com/watch?v=6tnIhzts8Ns
(Accessed: 10 March 2023).

37. Htwo (2022) The most influential AI in video game history. Youtube.
Available at: https://www.youtube.com/watch?v=4hcdvvxuS2U
(Accessed: 1 May 2023).

38. Keith, C. (2010) Agile game development with scrum. Boston, MA, USA:
Addison-Wesley Educational.

73

39. KickFlip (2018) Vietnam War - Part 1 [Real Footage]. Youtube.
Available at: https://www.youtube.com/watch?v=rrVqBqqq5AA
(Accessed: 10 March 2023).

40. Kremers, R. (2009) Level design: Concept, theory, and practice. Natick,
MA, USA: A K Peters.

41. Learn Programming and Math (2022) Git Large File Storage LFS |
GitHub blocks pushes that exceed 100 MB | solucionar error github LFS.
Youtube. Available at:
https://www.youtube.com/watch?v=Uyvm4hLkEAQ (Accessed: 23
March 2023).

42. MikePro (2021) Night vision goggles - sound effect - free MP3
download. Youtube. Available at:
https://www.youtube.com/watch?v=gpt11SD3snA (Accessed: 23 March
2023).

43. Millington, I. and Funge, J. (2009) Artificial Intelligence for Games. 2nd
edn. Philadelphia, PA, USA: Focal Press.

44. Mixamo character and animation
use (2021) https://community.adobe.com. Available at:
https://community.adobe.com/t5/mixamo-discussions/mixamo-
character-and-animation-use/m-p/12182711 (Accessed: 1 May 2023).

45. Nadeem, A. (2022) How to make Car Lights and Flare Effect in Unity
particle system. Youtube. Available at:
https://www.youtube.com/watch?v=Q_flwXeX3AQ (Accessed: 23 March
2023).

46. Nerd Head (2022) Make underwater camera - realistic effect|
#UnityIn60Sec. Youtube. Available at:
https://www.youtube.com/watch?v=9OYzeZvhTtM (Accessed: 28 March
2023).

47. nikobmxero (2007) Explosiones de bombas atomicas - Parte 1. Youtube.
Available at: https://www.youtube.com/watch?v=0SSxdn20tYw
(Accessed: 10 March 2023).

48. Palmer, S. W. (2015) Stalin’s Final Speech 1952 [Subtitled]. Youtube.
Available at: https://www.youtube.com/watch?v=3nMDjKtTigQ
(Accessed: 10 March 2023).

49. Problems, I. (2014) Kamikaze pilots WWII. Youtube. Available at:
https://www.youtube.com/watch?v=4mTECUWP0Hk (Accessed: 10
March 2023).

50. Rogers, S. (2014) Level up! The guide to great video game design. 2nd
edn. Nashville, TN, USA: John Wiley & Sons.

51. Sanjurjo, F. R. (2015) La bomba atómica, 70 años HD. Youtube.
Available at: https://www.youtube.com/watch?v=6xAy_XAif1Q
(Accessed: 10 March 2023).

52. SleepySounds (2015) Deep Sea Soundscape – 9 hours of underwater
ambience – Deep Ocean Sleep Sounds. Youtube. Available at:
https://www.youtube.com/watch?v=UjQxhOXco_k (Accessed: 29 March
2023).

53. Smith, M. and Queiroz, C. (2023) Unity 5.x Cookbook. Birmingham:
Packt Publishing.

54. The anatomy of a design document, part 1: Documentation guidelines
for the game concept and proposal (1999) Game Developer. Available at:

74

https://www.gamedeveloper.com/design/the-anatomy-of-a-design-
document-part-1-documentation-guidelines-for-the-game-concept-and-
proposal (Accessed: 1 May 2023).

55. Timeline-World History Documentaries (2020) The origins of
communist China’s war with Taiwan | secrets of war | timeline.
Youtube. Available at: https://www.youtube.com/watch?v=6FHHT_O-
Khk (Accessed: 10 March 2023).

56. Vegas, J. (2019) How to start a cutscene from a trigger with c# in unity
tutorial. Youtube. Available at:
https://www.youtube.com/watch?v=pru5sx_hqeE (Accessed: 28 March
2023).

57. Villafañe, A. M. (2013) Batalla de Normandía 1944 (‘Dia D’ completo).
Youtube. Available at:
https://www.youtube.com/watch?v=jHzhtcJHbww (Accessed: 10 March
2023).

58. VOCEDITALIA (2013) Discorso del Duce Benito Mussolini a Taranto, 7
settembre 1934. Youtube. Available at:
https://www.youtube.com/watch?v=mxSzUlX59eI (Accessed: 10 March
2023).

59. What do the labels mean? (no date) Pegi Public Site. Available at:
https://pegi.info/what-do-the-labels-mean (Accessed: 1 May 2023).

60. Wikipedia contributors (2022) Game design document, Wikipedia, The
Free Encyclopedia. Available at:
https://en.wikipedia.org/w/index.php?title=Game_design_document&o
ldid=1070154144.

61. (No date a) Unity.com. Available at: https://support.unity.com/hc/en-
us/articles/205623589-Can-I-use-assets-from-the-Asset-Store-in-my-
commercial-game (Accessed: 1 May 2023).

62. (No date b) Unity.com. Available at: https://support.unity.com/hc/en-
us/articles/205253119-Can-I-make-a-commercial-game-with-Unity-
Free-Personal-Edition (Accessed: 1 May 2023).

	1. Introduction
	About this project
	Aims and Objectives
	Summary of the achievements
	Gameplay Programming
	Level Design
	Narrative Design*
	UX Design

	2. State of the Art Review
	Review of similar games
	Useful Game Mechanics
	Player Controller
	Interaction with the environment
	Artificial Intelligence

	Technologies, algorithms and techniques
	Development Tools

	3. Analysis, requirements specification and development methodology
	MoSCoW Analysis
	Requirements specification
	MUST
	SHOULD
	COULD

	Development methodology

	4. Game Design
	Conceptual Design
	Theme
	Storyline
	Game Mechanics
	Appearance
	GUI
	Level Design

	Technical Design

	5. Implementation
	Parkour System
	Code Snippets
	Climbing System
	Code Snippets (1)

	6. Testing and Evaluation
	Test Cases
	Bugs
	User Feedback
	Evaluation

	7. Legal, Social, Security and Ethical Issues
	PEGI
	Copyright
	Ethical Issues
	Data Security

	8. Critical Review and Conclusion
	Achievements
	Areas to improve
	Time Management
	Personal Learning
	Future Work

	9. Research and References

