

3D GRAPHICS

PROGRAMMING
CI5525

Bellido Chueco, Daniel
K1925456

Level2: Outdoor Scene - Report

Daniel Bellido Chueco CI5525 3D GRAPHICS PROGRAMMING

K1925456 Level 2: Outdoor Scene

1

CI5525 3D GRAPHICS PROGRAMMING COURSEWORK

REPORT

LEVEL 2, Project 2: OUTDOOR SCENE

Recipes

This outdoor scene project has been developed following the recipes:

• 2.4 - The Fog

• 2.7 - Normal Mapping

• 2.11 - Rendering Water

• 2.12 - Particle Systems

• 2.14 - Rigged Characters

The Fog

The implementation of the fog was the first task carried out after creating my terrain in

Unity. As it can be seen in the image, the implementation is correct, with a natural look,

colour and density that work well with the terrain, the rigged character and the skybox,

which goes from having a sunny day texture to being totally gray when the key "1" is

pressed.

Figure 1 Screenshot taken from a previous version of the project (Backup)

Daniel Bellido Chueco CI5525 3D GRAPHICS PROGRAMMING

K1925456 Level 2: Outdoor Scene

2

However, fog is only implemented in the basic shader and the implementation of new

features in this scene, in particular the water and smoke from the volcano, has caused

the fog implementation to be incomplete due to using other shaders. The fog does not

cover surfaces such as the smoke from the volcano, the surface of the water, nor the

surface of the terrain where the normal map is applied, and, which code was transferred

from the basic shader to the terrain shader in order to successfully complete the

implementation of the rendering water. This problem could be solved if the fog code

implemented in the basic shader were duplicated to the rest of the shaders. But due to

other technical complications and lack of time, this implementation became a low

priority since it only counted 5% of the total marks. Therefore, the fog has been left in a

state that is not suitable for the scene but as it has been worked on and deserves a

mention.

Figure 2 Fog issues in the final version of the project.

Normal Mapping

Daniel Bellido Chueco CI5525 3D GRAPHICS PROGRAMMING

K1925456 Level 2: Outdoor Scene

3

Normal mapping has been successfully implemented on different objects. The first

normal map has been implemented on the ground generated by a custom height-map

previously created in Unity. This normal map had been implemented initially in the

basic shader but after the implementation of the water rendering it had to be duplicated

in the terrain shader in order to carry out the multi-texturing of the lake shore.

Figure 3 Normal map applied on terrain. View from volcano.

Figure 4 A closer look to the Normal Map on the terrain

The second normal map is applied to the rigged characters to which the multi-texturing

technique is also applied.

Daniel Bellido Chueco CI5525 3D GRAPHICS PROGRAMMING

K1925456 Level 2: Outdoor Scene

4

Figure 5 Multi-textured Rigged Character

The normal map applied is consistent with the composition of the scene and the

implementation of the point light located with the sphere of the sky, the sun, intended to

be an animated light slowly orbiting the terrain to make the effect of the normal map

more visible with changes of light. Being an implementation with lower priority than

other techniques, the idea has had to be discarded due to lack of time.

Figure 6 Point light simulating the Sun (Not animated)

Rendering Water

Daniel Bellido Chueco CI5525 3D GRAPHICS PROGRAMMING

K1925456 Level 2: Outdoor Scene

5

To implement the Lakeside scene it was essential to have an exterior scene with

multiple shaders (water and terrain shaders), which has been successfully achieved. In

addition, the smooth multi-texturing transition effect between the pebbles and the rock

above the water level has been achieved. Additionally, another terrain has been rendered

that gives the scene another layer with a different texture without the normal map

affecting it.

Figure 7 Multi textured shore line

Other implementations on the topic of rendering water are reflected and refracted light

combined to provide the colour of the water surface, as well as underwater mist that

enhances the colour of the water on the surface. In addition, the use of a completely

custom terrain designed to solve the end-of-the-world problem, the composition of the

scene remains totally consistent and interesting.

Figure 8 Water rendering with all the expected requirements implemented.

Daniel Bellido Chueco CI5525 3D GRAPHICS PROGRAMMING

K1925456 Level 2: Outdoor Scene

6

Particle Systems

The proposed particle system for this scene is the implementation of smoke rising from

the top of the volcano. These particles have their own shaders and are positioned,

scaled, and textured in a way that makes the smoke effect appropriate for the scene.

Figure 9 Volcano with particle system (smoke)

Other particle systems were planned to be implemented but the feedback received

suggested that it was not necessary to implement other particle systems. But the idea

was to implement some fire particles from the top of the volcano and some ash rain.

Rigged Characters

Two medieval-looking guards have been added to the rigged character topic. One of

them starts with a walking animation until it reaches the shore of the lake, once there it

stops and starts another idle animation as if looking for a way to pass. On the other side

of the lake is a watchtower and on top of it is another guard who has another animation

as if he wants to get his attention. So there are two characters, a total of three sets of

animations, and they are in a meaningful scene.

An attempt has been made to apply an interactive mode from which to control one of

the guards with the keyboard, but it has not been possible. It has also been tried to make

the guard draw a predetermined route but for strange reasons every time a rotation was

applied to apply a change of direction the guard's position changed in a very strange

way causing him to teleport to another point on the map.

Daniel Bellido Chueco CI5525 3D GRAPHICS PROGRAMMING

K1925456 Level 2: Outdoor Scene

7

Thus, it has only been possible to get the camera to automatically follow one of the

guards until he stops and changes his animation.

Figure 10 Scene with two animated rigged characters

To get the camera to follow the guard, a function called cameraChase() has been

created, which takes a float time as its only parameter, which consists of placing the

camera behind the guard. For it to move, simply multiply the value of the X and Z axes

by the time parameter multiplied by 2. As a last step, you only have to call this function

within the renderScene() function, which makes the "time" parameter increase in each

frame.

Figure 11 Snippet of the function that makes the camera chase the guard

